Глобальные экологические проблемы мирового океана. Что является основным загрязнителем Мирового океана


Моря и океаны покрывают значительную часть нашей планеты. Именно мировой океан определяет климат Земли, является домом для десятков тысяч различных форм жизни – от одноклеточных водорослей до тигровой акулы и синего кита. Загрязнение океана – одна из глобальных проблем XXI века.

Загрязнение мирового океана: что попадает в океан

Большая часть мусора попадает в океан, во-первых, прямым путём – когда люди сбрасывают отходы непосредственно в воды океанов и морей, – во-вторых, через канализационные стоки, реки и прибрежные зоны обитания.

Согласно результатам исследований Всемирного фонда дикой природы, более 80% загрязнения морской среды происходит в результате человеческой деятельности, осуществляемой на суше. Эта цифра говорит о том, что человечество, несмотря на предпринимаемые усилия, не научилось поддерживать своё существование без нанесения серьёзного урона экологии океана.

Нефть и продукты нефтепереработки

Загрязнение океана нефтедобычей

Разливы нефти наносят огромный ущерб морской среде, но на самом деле они отвечают только за примерно 12% нефти, поступающей в моря каждый год. Согласно исследованию Национального исследовательского совета США, 36% данного вида отходов поступают через стоки и реки как отходы городов и промышленности.

Разливы нефти в океане приводят к долгосрочным последствиям.

Морская нефтедобыча – одна из причин загрязнения океана токсичными продуктами и роста уровня парниковых газов. Нефтедобыча в США приводит к тысячам разливов нефти ежегодно.

Эта нефть может сохраняться десятилетиями и наносить необратимый ущерб хрупким морским экосистемам. В 2010 году в Мексиканском заливе произошёл мощный взрыв платформы морского бурения Deepwater Horizon британской компании “Бритиш петролеум”, в результате которого в море выделились миллионы баррелей нефти. Площадь нефтяного пятна составила около пяти процентов от площади Мексиканского залива. Разливы нефти ликвидировали с помощью химических дисперсантов, которые сами по себе являются загрязнителями для океана.

Удобрения

Удобрения попадают в океаны с полей, сельскохозяйственных ферм, газонов. Входящие в состав удобрений вещества вызывают эвтрофикацию – расцветание водорослей, которые истощают растворенный в воде кислород и препятствуют жизни морских обитателей, Происходит общее ухудшение качества воды.

Эвтрофикация уже создала огромные мертвые зоны в нескольких частях мира, например, в Мексиканском заливе и Балтийском море.

Пластик в океане

Многие экологи называют океан “мусорным супом”. В океане плавают миллионы тонн мусора, и большая его часть – это пластик.

Твердый мусор пробирается к океану. Пластиковые пакеты, воздушные шары, стеклянные бутылки, обувь, упаковочный материал – если не утилизировать правильно, эти отходы могут оказаться в океане.

Постоянное загрязнение пластиком представляет серьезную опасность для морской жизни. Животные запутываются в этом мусоре, могут глотать его как еду.

Было обнаружено, что высокие концентрации пластического материала, особенно части полиэтиленовых пакетов, становятся препятствиями в дыхательных путях и пищеварительной системе многих морских видов, включая китов, дельфинов, черепах.

Этот мусор впоследствии может вернуться из океана на берег, загрязняя прибрежные зоны обитания.

Пластик является серьёзной проблемой, поскольку он не подвержен биологическому разложению и, следовательно, остается в воде намного дольше (до 1000 лет дольше), чем другие формы мусора. Около 80 процентов морского мусора поступает с суши – с береговой линии, доставляется с помощью рек, приходит с городских улиц во время сильного дождя через ливневые стоки и переливы канализации.

Необходимо как можно больше пластика из отходов правильно утилизировать.

Отходы канализации

Во многих частях мира сточные воды попадают в океан, минуя процесс фильтрации. Так, 80% городских сточных вод попадают в Средиземное море, не подвергаясь обработке.

Эти сточные воды также способствуют эвтрофикации, вызывают болезни человека, являются причиной, из-за которой могут закрывать пляжи.

Токсичные химикаты

Ученые определяют концентрацию микропластика в устрицах и моллюсках

Почти каждый морской организм, от крошечного планктона до китов и белых медведей, подвержен воздействию опасных химических веществ, таких как пестициды и химикаты, используемые в обычных потребительских продуктах.

Некоторые из этих химических веществ попадают в море через преднамеренный сброс. На протяжении веков океан был удобной свалкой для отходов, образующихся на суше. К 1970-м годам практика сбросов отходов в океаны стала повсеместной – утилизировали в море всё, включая такие токсичные материалы, как пестициды, химическое оружие и радиоактивные отходы.

Сброс наиболее токсичных материалов был запрещен Лондонской конвенцией 1972 года о предотвращении загрязнения моря, а новый договор 1996 года еще больше ограничил то, что может быть сброшено в море. Однако всё ещё есть проблемы с уже сброшенным токсичным материалом.

Химические вещества также поступают в море из наземных видов деятельности. Химические вещества могут попадать в воду, почву и воздух в процессе их производства, использования или удаления, а также в результате случайных утечек или горении материалов, содержащих эти химикаты. Химические вещества распространяются на большие расстояния в воздухе и воде, включая океанские течения.

Люди когда-то полагали, что океан настолько велик, что все загрязняющие вещества будут разбавлены и рассеяны до безопасного уровня. Но на самом деле они не исчезли – они продолжают находиться в океане, отравляя жизнь в нём.

Окисление океана как следствие загрязнения

Сжигание ископаемого топлива загрязняет не только атмосферу, но и океан. Мировой океан поглощает до четверти всех антропогенных выбросов углерода, что изменяет рН поверхностных вод и приводит к окислению моря.

Эта проблема обостряется – океаны сейчас окисляются быстрее, чем примерно за последние 300 миллионов лет. Подсчитано, что к концу этого века, если мы будем идти в ногу с нашей нынешней скоростью выбросов, поверхностные воды океана могут стать почти на 150 процентов более “кислыми”, чем сейчас.

Что происходит, когда нарушаются биохимические процессы в океане? – Идут изменения в морских экосистемах и прибрежной экономике, которые зависят от них.

Для начала возьмём рифы и моллюсков. Чтобы построить свои раковины и скелеты, таким существам, как мидии, моллюски, кораллы и устрицы, требуется карбонат кальция (то же соединение, что и в мелу и известняке). Но уровень карбоната в океане снижается, когда повышается кислотность, угрожая выживанию этих животных. Двустворчатые моллюски находятся в начале пищевой цепочки, поэтому повышение окисление океана негативным образом влияет на рыб, морских птиц и млекопитающих. Более кислые воды также способствуют обесцвечиванию коралловых рифов и затрудняют некоторым видам рыб распознавание хищников, а другим – охоту на добычу.

Загрязнение океана: влияние токсичных веществ на морскую фауну и здоровье людей

Маленькие живые существа, такие как планктон в океанах, находящиеся в начале пищевой цепочки, впитывают химикаты в течении своей жизни. Так как планктон и другие небольшие существа достаточно устойчивы к разрушению, в их телах накапливаются химические вещества в большей концентрации, чем в окружающей воде или почве.

Эти организмы, в свою очередь, поглощают другие мелкие животные, и концентрация токсичных веществ снова возрастает. Эти животные затем съедаются крупными животными, которые могут перемещаться на большие расстояния с еще большей концентрацией химических веществ внутри своих тел.

Животные, находящиеся выше по пищевой цепочке, такие как тюлени, могут иметь уровни загрязнения в миллионы раз выше, чем окружающая среда. И белые медведи, которые питаются тюленями, могут иметь уровни загрязнения в 3 миллиарда раз выше, чем их окружающая среда.

Загрязнение моря

В результате люди могут нанести большой вред своему организму, питаясь морепродуктами и животными жирами.

Рак, повреждения иммунной системы, проблемы с поведением, зачатием и деторождением у людей – одни из последствий производства химических веществ, которые как неконтролируемым, так и намеренным образом попадают в моря и океаны.


Мировой океан, как принято называть совокупность все морей и океанов нашей планеты, занимает свыше 70% поверхности нашей планеты, в результате чего оказывает огромное влияние на все происходящие на Земле процессы. Поэтому, проблема усиливающегося с каждым годом загрязнения Мирового океана , является одной из главных проблем, стоящих сегодня перед человечеством.

Как человек загрязняет Мировой океан

С зарождением человечества началось Мирового океана. И если на ранних стадиях развития цивилизации это загрязнение Мирового океана не носило катастрофического и даже было в чем-то полезно (органические отходы стимулировали рост рыб и подводных растений), то в последние два столетия, с развитием химической и особенно нефтедобывающей промышленности, загрязнение это начинает принимать угрожающий характер и, если не принимать защитных мер, может привести к гибели всего живого в морях и океанах, а затем, возможно, и на суше.

Нефть и нефтепродукты

Наиболее распространенные загрязнители Мирового океана, поступающие в воду как в результате утечек при добыче нефти путем , аварийных ситуациях при ее транспортировке танкерами, так и в результате промышленных и бытовых сбросов отходов в пресноводные водоемы, откуда с водой рек также поступает в Мировой океан.

Еще одним источником загрязнения морей и океанов является распространенная практика промывки трюмов танкеров морской водой. В результате безответственных действий капитанов таких судов в прежние годы в Мировой океан сбрасывалось свыше 20 млн. баррелей нефти. Правда, в последние годы благодаря развитию систем спутникового слежения, большинство таких случаев уже не остаются безнаказанными и объем данного вида загрязнения океана сокращается.

Нефть и нефтепродукты опасны тем, что, несмотря на свое органическое происхождение, данные вещества практически не перерабатываются океанскими микроорганизмами, образуют на поверхности пленку, которая, изменяя состав спектра проникающих в толщу воды солнечных лучей и затрудняя доступ кислорода, существенно изменяет условия существования океанских растений и животных и приводит к их массовой гибели. Ситуация усугубляется стабильностью этой пленки, убрать которую возможно только механическими средствами.

Сточные воды

Появившись с возникновением человеческой цивилизации сточные воды поначалу оказывали даже положительное стимулирующее влияние на морские водоросли и рыбы, но с превращением этого источника загрязнения Мирового океана в мощные зловонные потоки, вырывающиеся из канализационных коллекторов современных городов. Чтобы просто подойти к этим современным клоакам, придется как минимум купить респиратор , а еще лучше противогаз. И все эти продукты человеческой цивилизации устремляются либо непосредственно в моря и океаны, либо попадают туда же с течением рек, оставляя после себя настоящие подводные пустыни, усеянные органическими остатками.

Проблема засорения сточными водами наиболее актуальна для прибрежных вод и внутренних морей. Так, исследования, проведенные в Северном море, показали, что около 65% обнаруженных в нем загрязнений принесены реками. Принимаемые в последнее годы развитыми странами усилия по обезвреживанию и разжижению сточных вод принесли некоторый эффект, но пока его явно недостаточно, здесь необходимы слаженные действия всех стран мира, особенно Китая и Индии и других азиатских стран, где считается в порядке вещей…

Мусорные пятна в Мировом океане

Рост потребления изделий из пластмассы в последние десятилетия создали уникальное и опасное явление в Мировом океане, получившее название “мусорные пятна”. Это огромные скопления кусочков отходов пластика, образовавшихся в результате сброса мусора из прибрежных зон континентов и с океанских лайнеров, располагающиеся в виде огромных пятен на поверхности океана. На сегодняшний день известны пять гигантских мусорных пятен – по два в Тихом и Атлантическом океанах и одно в Индийском.

Плавающие на поверхности частицы пластика, также как и нефтяная пленка, изменяют прохождение солнечных лучей, кроме того, часто попадают в желудок морских животных и птиц вместе с водой, вызывая массовую гибель последних. По данным ученых, морские отходы в Тихом океане ежегодно вызывают гибель более миллиона морских птиц и более 100 тыс. морских животных.

Самый большой мусорный остров расположен в центре Тихого океана, его быстрый рост обусловлен завихрениями подводных океанских течений. Площадь “Великого тихоокеанского мусорного острова” (Great Pacific Garbage Patch) в настоящее время превышает миллион квадратных километров. Энтузиасты-экологи создали несколько общественных организаций по борьбе с загрязнением океана пластиковыми отходами, но правительствам пока удается “не замечать” проблему – ведь со спутника мусорное пятно не видно, пластик-то прозрачный.

Охрана Мирового океана

Вот почему является поистине жизненно важной охрана морей и океанов от вредительской деятельности человека. Этой актуальной задаче посвятили себя многие выдающиеся ученые, на правительственном уровне каждый год принимаются важные решения, и хочется надеется, что человечество сможет остановить опасный процесс загрязнения океанских вод и еще долгие годы наслаждаться голубыми водными просторами Земли.

По мере развития производственных сил в бассейне озера Байкал заметно усилилось антропогенное воздействие на природную среду. Появились новые источники загрязнения. В Байкал ежегодно сбрасывалось свыше 700 млн. кубометров сточных вод. В реке Селенга, впадающей в Байкал, почти на километр ниже сброса стоков Селенгинского целлюлозно-картонного комбината концентрация загрязняющих веществ существенно превышает предельно допустимые нормы. По оценке специалистов, основное количество всех минеральных, органических и взвешенных веществ поступает в озеро со стоками Селенги, а остальные с других притоков (около 500 рек). До сих пор, несмотря на все принимаемые меры, выразившиеся в закрытии ряда целлюлозных комбинатов на берегу озера и установки очистных сооружений на оставшихся, положение к лучшему не изменилось. Загрязнение озера идет полным ходом. В озере Байкал рыбы становится все меньше и меньше. Сравните сами, 250 тонн сдавали в 1960 году и 120 в 1990 году. Такое происходит со многими озерами России.

Ничем не ограждены от загрязнения и моря, которые давно служат местом свалки различных нечистот . Моря и океаны загрязняются такими вредными для их жизнедеятельности веществами, как нефть, тяжелые металлы, пестициды, радиоизотопы. Загрязнение происходит в результате сброса в реки, а затем и в океан сточных вод различных предприятий. Сколько полей и лесов обработанных пестицидами и потерь нефти, при ее перевозке танкерами?

Газообразные токсические вещества, такие как оксид углерода, оксид серы, попадают в морские воды через атмосферу. По подсчетам, вместе с дождем в моря и океаны попадает 50000 тонн свинца. Вблизи береговой линии и в районе больших городов в морской воде нередко обнаруживается патогенная микрофлора. Степень загрязнения морской воды все больше и больше увеличивается. Нередко способность морей и океанов к самоочищению оказывается уже недостаточной. В основном поля загрязнений формируются в прибрежных водах крупных промышленных центров и узких рек, а так же в районах интенсивного судоходства и добычи нефти. Очень быстро загрязнения распространяются течениями и оказывают вредное воздействие на зоны, наиболее богатые животными и растительностью. Наносят серьезный ущерб состоянию морских экосистем.

Нефть и нефтепродукты. Ртуть и пестициды

К числу наиболее вредных химических веществ относят нефть и нефтепродукты. В связи с ростом добычи, транспортировки, переработки и потребления нефти расширяются масштабы загрязнения природы. Первыми жертвами загрязнения нефтепродуктами морских пространств оказываются птицы. Их оперение, когда они садятся на поверхность воды, затянутой пленкой нефти, утрачивают свои теплоизоляционные свойства. Вскоре птица погибает в результате кровоизлияния и расстройств вызванных нарушением терморегуляции. Но не только птицы страдают от действия нефтепродуктов, поскольку пленка нефти препятствует насыщению воды кислородом, прекращается жизнедеятельность организмов, в частности планктона. Кроме того, некоторые компоненты нефти действуют как настоящие яды на морских беспозвоночных, в особенности на ракообразных и даже на рыб.

Серьезную угрозу для человека представляют съедобные моллюски, которые концентрируют некоторые канцерогенные компоненты нефтепродуктов. Так в раковинах сердцевидки, устриц и мидий был найден бензопирен. Отходы нефти, разносимые течениями, прибиваются к берегам и прибрежной зане. Эти скопления оказывают большое влияние на организмы животных прибрежной полосы и очень неприятны для людей, посещающих пляжи.

Растворимые компоненты нефти являются очень ядовитыми. Присутствие их в морской воде приводит к гибели их обитателей. Они отрицательно влияют на вкусовые качества морских животных. Если оплодотворенную икру рыбы поместить в аквариум, с весьма незначительной концентрацией нефтепродуктов, то большинство зародышей погибает. А многие из уцелевших оказываются уродами. Негативное влияние нефти на живые организмы выражается в нарушении работы ферментативного аппарата, нервной системы и в патологическом изменении тканей и органов. Для морских обитателей нефть - своего рода наркотик. Замечено, что некоторые рыбы «хлебнув» однажды нефти, уже не стремятся покинуть отравленную зону. Нефтяное загрязнение - это грозный фактор, влияющий на жизнь всего мирового океана.

Ежедневно с земли в океан поступает до 5000 тонн ртути, используемой в сельском хозяйстве и промышленности. Загрязнение ртутью значительно снижает первичную продуктивность морских вод. В зонах наибольшей концентрации отмечается уменьшение количества мельчайших зеленых водорослей, синтезирующих органические вещества и выделяющих кислород. Тяжелые металлы поглощаются фитопланктоном, а затем, по пищевой цепочке, передаются высокоорганизованным организмам. В результате в рыбах и морских млекопитающих металлы могут накапливаться в опасных концентрациях.

Мировая продукция пестицидов достигает больших масштабов. Относительная химическая устойчивость многих из этих соединений, а так же характер распространения, способствовали их поступлению в моря и океаны. Постоянное накопление в воде хлорорганических веществ представляет серьезную угрозу для жизни людей.

Моря и океаны, через реки непосредственно с суши, с судов и барж сбрасываются жидкие и твердые отходы . Часть этих загрязнений оседают в прибрежной зоне, а часть под влиянием морских течений, рассеивается в разных направлениях. В поверхностном слое моря, в огромных количествах развиваются бактерии и не только полезные, играющие большую роль в жизни моря. В последнее время, вблизи крупных городов, все чаще появляются патогенные виды бактерий возбудители желудочно-кишечных заболеваний. Это следствие выпуска в море бытовых сточных вод без предварительной их биологической очистки.

1. Особенности поведения загрязняющих веществ в океане

2. Антропогенная экология океана - новое научное направление в океанологии

3. Концепция ассимиляционной емкости

4. Выводы из оценки ассимиляционной емкости морской экосистемы загрязняющими веществами на примере Балтийского моря

1 Особенности поведения загрязняющих веществ в океане. Последние десятилетия знаменуются усилением антропогенных воздействий на морские экосистемы в результате загрязнения морей и океанов. Распространение многих загрязняющих веществ приобрело локальный, региональный и даже глобальный масштабы. Поэтому загрязнение морей, океанов и их биоты стало важнейшей международной проблемой, а необходимость охраны морской среды от загрязнений диктуется требованиями рационального использования природных ресурсов.

Под загрязнением моря понимается: «введение человеком прямо или косвенно веществ или энергии в морскую среду (включая эстуарии), влекущее такие вредные последствия, как ущерб живым ресурсам, опасность для здоровья людей, помехи в морской деятельности, включая рыболовство, ухудшение качества морской воды и умень­шение ее полезных свойств». Этот список включает вещества с токсическими свойствами, сбросы нагретых вод (тепловое загрязнение), патогенные микробы, твердые отходы, взвешенные вещества, биогенные вещества и некоторые другие формы антропогенных воздействий.

Наиболее актуальной в наше время стала проблема химиче­ского загрязнения океана.

К источникам загрязнения океана и морей можно отнести следующие:

Сброс промышленных и хозяйственных вод непосредственно в море или с речным стоком;

Поступление с суши различных веществ, применяемых в сельском и лесном хозяйстве;

Преднамеренное захоронение в море загрязняющих веществ; утечки различных веществ в процессе судовых операций;

Аварийные выбросы с судов или подводных трубопроводов;

Разработка полезных ископаемых на морском дне;

Перенос загрязняющих веществ через атмосферу.

Перечень получаемых океаном загрязняющих веществ чрезвычайно обширен. Все они различаются между собой по степени токсичности и масштабам распространения - от прибрежных (локальных) до глобальных.

В Мировом океане находят все новые загрязняющие вещества. Глобальное распространение приобретают наиболее опасные для организмов хлорорганические соединения, полиароматические углеводороды и некоторые другие. Они обладают высокой биоаккумулятивной способностью, резким токсическим и канцерогенным эффектом.

Неуклонное нарастание суммарного воздействия многих источников загрязнения приводит к прогрессирующей эвтрофикации прибрежных морских зон и микробиологическому загрязнению воды, что существенно затрудняет использование воды для раз­личных нужд человека.


Нефть и нефтепродукты. Нефть представляет собой вязкую маслянистую жидкость, обычно имеющую темно-коричневый цвет и обладающую слабой флуоресценцией. Нефть состоит преимущественно из насыщенных алифатических и гидроароматических углеводородов (от C 5 до С 70) и содержат 80-85 % С, 10-14 % Н, 0,01-7 % S, 0,01 % N и 0-7 % О 2 .

Основные компоненты нефти - углеводороды (до 98 %) - подразделяются на четыре класса.

1. Парафины (алканы) (до 90 % от общего состава нефти) -устойчивые насыщенные соединения C n H 2n-2 , молекулы которых выражены прямой или разветвленной (изоалканы) цепью атомов углерода. Парафины включают газы метан, этан, пропан и другие, соединения с 5-17 атомами углерода являются жидкостями, а с большим числом атомов углерода - твердыми веществами. Легкие парафины обладают максимальной летучестью и растворимостью в воде.

2. Циклопарафины. (нафтены)-насыщенные циклические соединения С n Н 2 n с 5-6 атомами углерода в кольце (30-60 % от общего состава нефти). Кроме циклопентана и циклогексана в нефти встречаются бициклические и полициклические нафтены. Эти соединения очень устойчивы и плохо поддаются биоразложению.

3. Ароматические углеводороды (20-40 % от общего состава нефти) - ненасыщенные циклические соединения ряда бензола, содержащие в кольце на 6 атомов углерода меньше, чем соответствующие нафтены. Атомы углерода в этих соединениях также могут замещаться алкильными группами. В нефти присутствуют летучие соединения с молекулой в виде одинарного кольца (бензол, толуол, ксилол), затем бициклические (нафталин), трициклические (антрацен, фенантрен) и полициклические (например, пирен с 4 кольцами) углеводороды.

4. Олефипы (алкены) (до 10 % от общего состава нефти) -ненасыщенные нециклические соединения с одним или двумя атомами водорода у каждого атома углерода в молекуле, имеющей прямую или разветвленную цепь.

В зависимости от месторождения, нефти существенно различа­ются по своему составу. Так, пенсильванская и кувейтская нефти квалифицируются как парафинистые, бакинская и калифорний­ская - преимущественно нафтеновые, остальные нефти - проме­жуточных типов.

В нефти присутствуют также серосодержащие соединения (до 7% серы), жирные кислоты (до 5% кислорода), азотные соединения (до 1 % азота) и некоторые металлоорганические производные (с ванадием, кобальтом и никелем).

Количественный анализ и идентификация нефтепродуктов в морской среде представляют значительные трудности не только из-за их многокомпонентности и различия форм существования, но и вследствие природного фона углеводородов естественного и биогенного происхождения. Например, около 90 % растворенных в поверхностных водах океана низкомолекулярных углеводородов типа этилена связано с метаболической активностью организмов и распадом их остатков. Однако в районах интенсивного загряз­нения уровень содержания подобных углеводородов повышается на 4-5 порядков.

Углеводороды биогенного и нефтяного происхождения, по данным экспериментальных исследований, имеют ряд различий.

1. Нефть представляет собой более сложную смесь углеводородов с большим диапазоном структур и относительной молекулярной массой.

2. Нефть содержит несколько гомологических серий, в которых соседние члены обычно имеют равные концентрации. Например, в ряду алканов С 12 -C 22 отношение четных и нечетных членов равно единице, тогда как биогенные углеводороды в том же ряду содержат преимущественно нечетные члены.

3. Нефть содержит более широкий диапазон циклоалканов и ароматических углеводородов. Многие соединения, такие, как моно-, ди-, три- и тетраметилбензолы не обнаружены в морских организмах.

4. Нефть содержит многочисленные нафтено-ароматические углеводороды, разнообразные гетеросоединения (имеющие в составе серу, азот, кислород, ионы металлов), тяжелые асфальтоподобные вещества - все они практически отсутствуют в организмах.

Нефть и нефтепродукты являются наиболее распространен­ными загрязняющими веществами в Мировом океане.

Пути поступления и формы существования нефтяных углеводо­родов многообразны (растворенная, эмульгированная, пленочная, твердообразная). М. П. Нестерова (1984) отмечает следующие пути поступления:

сбросы в портах и припортовых акваториях, вклюная потери при загрузке бункеров наливных судов (17 %~);

Сброс промышленных- отходов и сточных вод (10%);

Ливневые стоки (5 %);

Катастрофы судов и буровых установок в море (6 %);

Бурение на шельфах (1 %);

Атмосферные выпадения (10 %)",

Вынос речным стоком во всем многообразии форм (28%).

Сбросы в море промывочных, балластных и льяльных вод с судов (23%);

Наибольшие потери нефти связаны с ее транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод,-все это обусловливает присут­ствие постоянных полей загрязнений на трассах морских путей.

Свойством нефтей является их флуоресценция при ультрафиолето­вом облучении. Максимальная интенсивность флуоресценции наб­людается в интервале волн 440-483 нм.

Различие оптических характеристик нефтяных пленок и мор­ской воды позволяет проводить дистанционное обнаружение и оценку нефтяных загрязнений на поверхности моря в ультрафиолетовой, видимой и инфракрасной частях спектра. Для этого при­меняются пассивные и активные методы. Большие массы нефти с суши поступают в моря по рекам, с бытовыми и ливневыми стоками.

Судьба разлитой в море нефти определяется суммой следую­щих процессов: испарение, эмульгирование, растворение, окисле­ние, образование нефтяных агрегатов, седиментация и биодеградация.

Попадая в морскую среду, нефть сначала растекается в виде поверхностной пленки, образуя слики различной мощности. По цвету пленки можно приблизительно оценить ее толщину. Нефтяная пленка изменяет интенсивность и спект­ральный состав проникающего в водную массу света. Пропуска­ние света тонкими пленками сырой нефти составляет 1 -10 % (280 нм), 60-70 % (400 нм). Пленка нефти толщиной 30-40 мкм полностью поглощает инфракрасное излучение.

В первое время существования нефтяных сликов большое зна­чение имеет процесс испарения углеводородов. По данным наблю­дений, за 12 ч улетучивается до 25 % легких фракций нефти, при температуре воды 15 °С все углеводороды до C 15 испаряются за 10 сут (Нестерова, Немировская, 1985).

Все углеводороды обладают слабой растворимостью в воде, уменьшающейся с увеличением числа атомов углерода в моле­куле. В 1 л дистиллированной воды растворяется около 10 мг соединений с С 6 , 1 мг - с С 8 и 0,01 мг соединений с С 12 . Например, при средней температуре морской воды растворимость бензола составляет 820 мкг/л, толуола - 470, пентана - 360, гексана - 138 и гептана - 52 мкг/л. Растворимые компоненты, содержание которых в сырой нефти не превышает 0,01 %, являются наиболее токсичными- для водных организмов. К ним же относятся и веще­ства типа бенз(а)пирена.

Смешиваясь с водой, нефть образует эмульсии двух типов: пря­мые «нефть в воде» и обратные «вода в нефти». Прямые эмуль­сии, составленные капельками нефти диаметром до 0,5 мкм, ме­нее устойчивы и особенно характерны для нефтей, содержащих поверхностно-активные вещества. После удаления летучих и растворимых фракций остаточная нефть чаще образует вязкие обратные эмульсии, которые стабилизируются высокомолекуляр­ными соединениями типа смол и асфальтенов и содержат 50- 80 % воды («шоколадный мусс»). Под влиянием абиотических процессов вязкость «мусса» повышается и начинается его слипа­ние в агрегаты - нефтяные комочки размерами от 1 мм до 10 см (чаще 1-20 мм). Агрегаты представляют собой смесь вы­сокомолекулярных углеводородов, смол и асфальтенов. Потери нефти на формирование агрегатов составляют 5-10%- Высоко­вязкие структурированные образования - «шоколадный мусс» и нефтяные комочки - могут длительное время сохраняться на поверхности моря, переноситься течениями, выбрасываться на берег и оседать на дно. Нефтяные комочки нередко заселяются перифитоном (сине-зеленые и диатомовые водоросли, усоногие рачки и другие беспозвоночные).

Пестициды составляют обширную группу искусственно создан­ных веществ, используемых для борьбы с вредителями и болез­нями растений. В зависимости от целевого назначения пестициды делятся на следующие группы: инсектициды – для борьбы с вред­ными насекомыми, фунгициды и бактерициды – для борьбы с грибными и бактериальными болезнями растений, гербициды – против сорных растений и т. д. Согласно расчетам экономистов, каждый рубль, затраченный на химическую защиту растений от вредителей и болезней, обеспечивает сохранение урожая и его качество при возделывании зерновых и овощных культур в сред­нем на 10 руб., технических и плодовых – до 30 руб. Вместе с тем экологическими исследованиями установлено, что пестициды, уничтожая вредителей урожаев, наносят огромный вред многим полезным организмам и подрывают здоровье природных биоцено­зов. В сельском хозяйстве уже давно стоит проблема перехода от химических (загрязняющих среду) к биологическим (экологи­чески чистым) методам борьбы с вредителями.

В настоящее время более 5 млн. т пестицидов ежегодно посту­пает на мировой рынок. Около 1,5 млн. т этих веществ уже вошло в состав наземных и морских экосистем эоловым или водным путем. Промышленное производство пестицидов сопровождается появлением большого количества побочных продуктов, загрязня­ющих сточные воды.

В водной среде чаще других встречаются представители инсек­тицидов, фунгицидов и гербицидов.

Синтезированные инсектициды делятся на три основные группы: хлорорганические, фосфорорганические и карбаматы.

Хлорорганические инсектициды получают путем хлорирования ароматических или гетероциклических жидких углеводородов. К ним относятся ДДТ (дихлордифенилтрихлорэтан) и его произ­водные, в молекулах которых устойчивость алифатических и аро­матических групп в совместном присутствии возрастает, всевоз­можные хлорированные производные циклодиена (элдрин, дил-дрин, гептахлор и др.), а также многочисленные изомеры гекса-хлорциклогексана (у-ГХЦГ), из которых наиболее опасен линдан. Эти вещества имеют период полураспада до нескольких десятков лет и очень устойчивы к биодеградации.

В водной среде часто встречаются полихлорбифенилы (ПХБ) – производные ДДТ без алифатической части, насчиты­вающие 210 теоретических гомологов и изомеров.

За последние 40 лет использовано более 1,2 млн. т ПХБ в производстве пластмасс, красителей, трансформаторов, конденсаторов и т. д. Полихлорбифенилы попадают в окружающую среду в результате сбросов промышленных сточных вод и сжига­ния твердых отходов на свалках. Последний источник поставляет ПХБ в атмосферу, откуда они с атмосферными осадками выпа­дают во всех районах земного шара. Так, в пробах снега, взятых в Антарктиде, содержание ПХБ составило 0,03 – 1,2 нг/л.

Фосфорорганические пестициды – это сложные эфиры различных спиртов ортофосфорной кислоты или одной из ее производ­ных, тиофосфорной. В эту группу входят современные инсекти­циды с характерной избирательностью действия по отношению к насекомым. Большинство органофосфатов подвержены довольно быстрому (в течение месяца) биохимическому распаду в почве и воде. Синтезировано более 50 тысяч активных веществ, из ко­торых особую известность получили паратион, малатион, фозалонг, дурсбан.

Карбаматы – это, как правило, сложные эфиры n-метакарба-миновой кислоты. Большинство из них также обладает избирательностью действия.

В качестве фунгицидов, применяемых для борьбы с грибными заболеваниями растений, ранее использовались соли меди и не­которые минеральные соединения серы. Затем широкое употреб­ление нашли ртутьорганические вещества типа хлорированной метилртути, которая из-за своей крайней токсичности для жи­вотных была заменена метоксиэтилами ртути и ацетатами фенил-ртути.

В группу гербицидов входят производные феноксиуксусной кислоты, обладающие сильным физиологическим действием. Триазины (например, симазин) и замещенные мочевины (монурон, диурон, пихлорам) составляют еще одну группу гербицидов, довольна хорошо растворимых в воде и устойчивых в почвах. Наиболее сильным из всех гербицидов является пихлорам. Для полного уничтожения некоторых видов растений требуется всего лишь 0,06 кг этого вещества на 1 га.

В морской среде постоянно обнаруживаются ДДТ и его метаболиты, ПХБ, ГХЦГ, делдрин, тетрахлорфенол и другие.

Синтетические поверхностно-активные вещества. Детергенты (СПАВ) относятся к обширной группе веществ, понижающих поверхностное натяжение воды. Они входят в со­став синтетических моющих средств (CMC), широко применяемых в быту и промышленности. Вместе со сточными водами СПАВ по­падают в материковые поверхностные воды и морскую среду. Синтетические моющие средства содержат полифосфаты натрия, в которых растворены детергенты, а также ряд добавочных ингре­диентов, токсичных для водных организмов: ароматизирующие вещества, отбеливающие реагенты (персульфаты, пербораты), кальцинированная сода, карбоксиметилцеллюлоза, силикаты нат­рия и другие.

Молекулы всех СПАВ состоят из гидрофильной и гидрофобной частей. Гидрофильной частью служат карбоксильная (СОО -), сульфатная (OSO 3 -) и сульфонатная (SO 3 -) группы, а также скоп­ления остатков с группами -СН 2 -СН 2 -О-СН 2 -СН 2 - или группы, содержащие азот и фосфор. Гидрофобная часть состоит обычно из прямой, включающей 10-18 атомов углерода, или раз­ветвленной парафиновой цепи, из бензольного или нафталинового кольца с алкильными радикалами.

В зависимости от природы и структуры гидрофильной части молекулы СПАВ делятся на анионоактивные (органический ион заряжен отрицательно), катионоактивные (органический ион за­ряжен положительно), амфотерные (проявляющие в кислом раст­воре катионактивные свойства, а в щелочном - анионоактивные) и неионогенные. Последние не образуют ионов в воде. Их раст­воримость обусловлена функциональными группами, имеющими -сильное сродство к воде, и образованием водородной связи между молекулами воды и атомами кислорода, входящими в полиэти-ленгликолевый радикал ПАВ.

Наиболее распространенными среди СПАВ являются анионоактивные вещества. На их долю приходится более 50 % всех производимых в мире СПАВ. Наибольшее рас­пространение получили алкиларилсульфонаты (сульфонолы) и алкилсульфаты. Молекулы сульфонолов содержат ароматическое кольцо, водородные атомы которого замещены одной или несколь­кими алкильными группами, а в качестве сольватирующей группы - остаток серной кислоты. Многочисленные алкилбензол-сульфонаты и алкилнафталинсульфонаты часто исполь­зуются при изготовлении различных бытовых и промышленных CMC.

Присутствие СПАВ в сточных водах промышленности связано с использованием их в таких процессах, как флотационное обогащение руд, разделение продуктов химической технологии, получение полимеров, улучшение условий бурения нефтяных и газовых скважин, борьба с коррозией оборудования.

В сельском хозяйстве применяются СПАВ в составе пестицидов. С помощью СПАВ эмульгируют нерастворимые в воде, но растворимые в органических растворителях жидкие и порошко­образные токсичные вещества, причем многие СПАВ сами обла­дают инсектицидными и гербицидными свойствами.

Канцерогенные вещества - это химически однородные соеди­нения, проявляющие трансформирующую активность и способ­ные вызывать канцерогенные, тератогенные (нарушение процес­сов эмбрионального развития) или мутагенные изменения в орга­низмах. В зависимости от условий воздействия они могут приво­дить к ингибированию роста, ускорению старения, токсикогенезу, нарушению индивидуального развития и изменению генофонда ор­ганизмов. К веществам, обладающим канцерогенными свойствами, отно­сятся хлорированные алифатические углеводороды с короткой щепочкой атомов углерода в молекуле, винилхлорид, пестицидные препараты и, особенно, полициклические ароматические углево­дороды (ПАУ). Последние представляют собой высокомолекуляр­ные органические соединения, в молекулах которых бензольное кольцо является основным элементом структуры. Многочисленные незамещенные ПАУ содержат в молекуле от 3 до 7 бензольных колец, разнообразно соединенных между собой. Существует также большое число полициклических структур, содержащих функциональную группу либо в бензольном кольце, либо в боко­вой цепи. Эта галоген-, амино-, сульфо-, нитропроизводные, а также спирты, альдегиды, эфиры, кетоны, кислоты, хиноны и другие соединения ароматического ряда.

Растворимость ПАУ в воде невелика и уменьшается с увеличением молекулярной массы: от 16 100 мкг/л (аценафтилен) до 0,11 мкг/л (3,4-бензпирен). Присутствие в воде солей практически не влияет на растворимость ПАУ. Однако в присутствии бензола, нефти, нефтепродуктов, детергентов и других органических ве­ществ растворимость ПАУ резко возрастает. Из группы незамещенных ПАУ в природных условиях наиболее известен и распространен 3,4-бензпирен (БП).

Источниками ПАУ в окружающей среде могут служить природные и антропогенные процессы. Концентрация БП в вулкани­ческом пепле составляет 0,3-0,9 мкг/кг. Это означает, что с пеп­лом в окружающую среду может поступать 1,2-24 т БП в год. Поэтому максимальное количество ПАУ в современных донных осадках Мирового океана (более 100 мкг/кг массы сухого веще­ства) обнаружено в тектонически активных зонах, подверженных глубинному термическому воздействию.

По имеющимся сведениям, некоторые морские растения и жи­вотные могут синтезировать ПАУ. В водорослях и морских тра­вах вблизи западного побережья Центральной Америки содержа­ние БП достигает 0,44 мкг/г, а в некоторых ракообразных в Арктике-0,23 мкг/г. Анаэробные бактерии вырабатывают до 8,0 мкг БП из 1 г липидных экстрактов планктона. С другой сто­роны, существуют специальные виды морских и почвенных бакте­рий, разлагающих углеводороды, включая ПАУ.

По оценкам Л. М. Шабада (1973) и А. П. Ильницкого (1975), фоновая концентрация БП, создаваемая в результате синтеза БП растительными организмами и вулканической дея­тельности, составляет: в почвах 5-10 мкг/кг (сухого вещества), в растениях 1-5 мкг/кг, в воде пресноводных водоемов 0,0001 мкг/л. Соответственно выводятся и градации степени за­грязненности объектов окружающей среды (табл. 1.5).

Основные антропогенные источники ПАУ в окружающей среде - это пиролиз органических веществ при сжигании различ­ных материалов, древесины и топлива. Пиролитическое образование ПАУ происходит при температуре 650-900 °С и недостатке кислорода в пламени. Образование БП наблюдалось в процессе пиролиза древесины с максимальным выходом при 300-350 °С (Дикун, 1970).

По оценке М. Зюсса (Г976 г.), глобальная эмиссия БП в 70-х годах составляла около 5000 т в год, причем 72 % приходится на промышленность и 27 % - на все виды открытого сжигания.

Тяжелые металлы (ртуть, свинец, кадмий, цинк, медь, мышьяк и другие) относятся к числу распространенных и весьма токсичных, загрязняющих веществ. Они широко применяются в различных промышленных производствах, поэтому несмотря на очистные ме­роприятия, содержание соединений тяжелых металлов в промыш­ленных сточных водах довольно высокое. Большие массы этих соединений поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, сви­нец и кадмий.

Ртуть переносится в океан с материковым стоком и через атмосферу. При выветривании осадочных и изверженных пород, ежегодно выделяется 3,5 тыс. т ртути. В составе атмосферной пыли содержится около 12 тыс. т ртути, причем значительная часть антропогенного происхождения. В результате извержения вулканов и с атмосферными осадками на поверхность океана ежегодно поступает 50 тыс. т ртути, а при дегазации литосферы - 25-150 тыс. т. Около половины годового промышленного произ­водства этого металла (9-10 тыс. т/год) различными путями по­падает в океан. Содержание ртути в каменном угле и нефти со­ставляет в среднем 1 мг/кг, поэтому при сжигании ископаемого топлива Мировой океан получает более 2 тыс. т/год. Годовая до­быча ртути превышает 0,1 % от ее общего содержания в Мировом океане, однако антропогенный приток уже превосходит естественный вынос реками, что характерно для многих металлов.

В районах, загрязняемых промышленными сточными водами, концентрация ртути в растворе и взвесях сильно повышается. При этом некоторые бентосные бактерии переводят хлориды в высокотоксичную (моно- и ди-) метилртуть CH 3 Hg. Заражение морепродуктов неоднократно приводило к ртутному отравлению, прибрежного населения. К 1977 г. в Японии насчитывалось 2800 жертв болезни Минамата. Причиной послужили отходы пред­приятий по производству хлорвинила и ацетальдегида, на которых, в качестве катализатора использовалась хлористая ртуть. Недостаточно очищенные сточные воды предприятий поступали в за­лив Минамата.

Свинец - типичный рассеянный элемент, содержащийся во всех компонентах окружающей среды: в горных породах, почвах, природных водах, атмосфере, живых организмах. Наконец, свинец, активно рассеивается в окружающую среду в процессе хозяйст­венной деятельности человека. Это выбросы с промышленными и бытовыми стоками, с дымом и пылью промышленных предприя­тий, с выхлопными газами двигателей внутреннего сгорания.

По оценкам В. В. Добровольского (1987), перераспределение масс свинца между сушей и Мировым океаном имеет следующий вид. С. речным стоком при средней концентрации свинца в воде 1 мкг/л в океан водорастворимого свинца выносится около 40 10 3 т/год, в твердой фазе речных взвесей примерно 2800-10 3 т/год, в тонком органическом детрите-10 10 3 т/год. Если учесть, что в узкой прибрежной полосе шельфа оседает более 90 % речных взвесей и значительная часть водорастворимых соединений металлов захватывается гелями оксидов железа, то в результате пелагиаль океана получает лишь около (200- 300) 10 3 т в составе тонких взвесей и (25-30) 10 3 т растворенных соединений.

Миграционный поток свинца с континентов в океан идет не только с речным стоком, но и через атмосферу. С континенталь­ной пылью океан получает (20-30)-10 3 т свинца в год. Поступле­ние его на поверхность океана с жидкими атмосферными осад­ками оценивается в (400-2500) 10 3 т/год при концентрации в дождевой воде 1-6 мкг/л. Источниками свинца, поступающего в атмосферу являются вулканические выбросы (15-30 т/год в составе пелитовых продуктов извержений и 4 10 3 т/год в суб­микронных частицах), летучие органические соединения от расти­тельности (250-300 т/год), продукты сгорания при пожарах ((6-7) 10 3 т/год) и современная промышленность. Производ­ство свинца возросло от 20-10 3 т/год в начале XIX в. до 3500 10 3 т/год к началу 80-х годов XX в. Современный выброс свинца в окружающую среду с индустриальными и бытовыми отходами оценивается в (100-400) 10 3 т/год.

Кадмий, мировое производство которого в 70-х годах достигло 15 10 3 т/год, также поступает в океан с речным стоком и через атмосферу. Объем атмосферного выноса кадмия, по разным оценкам, составляет (1,7-8,6) 10 3 т/год.

Сброс отходов в море с целью захоронения (дампинг). Многие страны, имеющие выход к морю, производят морское захоронение различных материалов и веществ, в частности грунта, вынутого при дноуглубительных работах, бурового шлама, отхо­дов промышленности, строительного мусора, твердых отходов, взрывчатых и химических веществ, радиоактивных отходов и т. п. Объем захоронений составляет около 10 % от всей массы загрязняющих веществ, поступающих в Мировой океан. Так, с 1976 по 1980 г. ежегодно с целью захоронения, чем и опреде­ляется понятие «дампинг», сбрасывалось более 150 млн. т разно­образных отходов.

Основанием для дампинга в море служит способность мор­ской среды к переработке большого количества органических и неорганических веществ без особого ущерба качеству воды. Од­нако эта способность не беспредельна. Поэтому дампинг рассмат­ривается как вынужденная мера, временная дань общества несо­вершенству технологии. Отсюда особую важность приобретают выработка и научное обоснование путей регулирования сбросов отходов в море.

В шламах промышленных производств присутствуют разнооб­разные органические вещества и соединения тяжелых металлов. Бытовой мусор в среднем содержит (на массу сухого вещества) 32-40 % органических веществ, 0,56 % азота, 0,44 % фосфора, 0,155 % цинка, 0,085 % свинца, 0,001 % кадмия, 0,001 ртути. Шламы очистных сооружений коммунальных стоков содержат (на массу сухого вещества) до. 12 % гуминовых веществ, до 3 % общего азота, до 3,8 % фосфатов, 9-13 % жиров, 7-10 % углеводов и загрязнены тяжелыми металлами. Аналогичный состав имеют и материалы дночерпания.

Во время сброса при прохождении материала через столб воды часть загрязняющих веществ переходит в раствор, изменяя качество воды, другая сорбируется частицами взвеси и переходит в донные отложения. Одновременно повышается мутность воды. Наличие органических веществ часто приводит к быстрому рас­ходованию кислорода в воде и нередко к его полному исчезнове­нию, растворению взвесей, накоплению металлов в растворенной форме, появлению сероводорода. Присутствие большого количе­ства органических веществ создает в грунтах устойчивую восста­новительную среду, в которой возникает особый тип иловых вод, содержащих сероводород, аммиак, ионы металлов в восстановлен­ной форме. При этом происходит восстановление сульфатов и нитратов, выделяются фосфаты.

Воздействию сбрасываемых материалов в разной степени под­вергаются организмы нейстона, пелагиали и бентоса. В случае образования поверхностных пленок, содержащих нефтяные угле­водороды и СПАВ, нарушается газообмен на границе воздух- вода. Это приводит к гибели личинок беспозвоночных, личинок и мальков рыб, вызывает увеличение численности нефтеокисляющих и патогенных микроорганизмов. Наличие в воде загрязня­ющей взвеси ухудшает условия питания, дыхания и обмена ве­ществ у гидробионтов, сокращает скорость роста, тормозит по­ловое созревание планктонных ракообразных. Загрязняющие ве­щества, поступающие в раствор, могут аккумулироваться в тканях и органах гидробионтов и оказывать токсическое воздействие на них. Сброс материалов дампинга на дно и длительная повышен­ная мутность придонной воды приводят к засыпке и гибели от удушья прикрепленных и малоподвижных форм бентоса. У вы­живших рыб, моллюсков и ракообразных сокращается скорость роста за счет ухудшения условий питания и дыхания. Нередко из­меняется видовой состав донного сообщества.

При организации системы контроля за сбросами отходов в море решающее значение имеет определение районов дампинга с учетом свойств материалов и характеристик морской среды. Необходимые критерии решения проблемы со­держит «Конвенция по предотвращению загрязнения моря сбро­сами отходов и других материалов» (Лондонская конвенция по дампингу, 1972 г.). Основные требования Конвенции сле­дующие.

1. Оценка количества, состояния и свойств (физических, хи­мических, биохимических, биологических) сбрасываемых мате­риалов, их токсичности, устойчивости, склонности к накоплению и биотрансформации в водной среде и морских организмах. Использование возможностей нейтрализации, обезвреживания и реутилизации отходов.

2. Выбор районов сброса с учетом требований максимального разбавления веществ, минимального распространения их за пределы сброса, благоприятного сочетания гидрологических и гидрофизических условий.

3. Обеспечение удаленности районов сброса от районов нагула рыб и нереста, от мест обитания редких и чувствительных видов гидробионтов, от зон отдыха и хозяйственного использования.

Техногенные радионуклиды. Океану свойственна естественная радиоактивность, обуслов­ленная присутствием в нем 40 К, 87 Rb, 3 H, 14 С, а также радионуклидов рядов урана и тория. Более 90 % естественной радиоак­тивности воды океана приходится на долю 40 К, что составляет 18,5-10 21 Бк. Единица активности в системе СИ - беккерель (Бк), равен активности изотопа, в котором за время 1 с происходит 1 акт распада. Ранее широко использовалась внесистемная единица радиоактивности кюри (Ки), соответствующая актив­ности изотопа, в котором за время 1 с происходит 3,7-10 10 актов распада.

Радиоактивные вещества техногенного происхождения, глав­ным образом продукты деления урана и плутония, стали в боль­ших количествах поступать в океан после 1945 г., т. е. с начала испытаний ядерного оружия и широкого развития промышлен­ного получения делящихся материалов и радиоактивных нукли­дов. Выявляются три группы источников: 1) испытания ядерного оружия, 2) сброс радиоактивных отходов, 3) аварии судов с атомными двигателями и аварии, связанные с использованием, транспортировкой и получением радионуклидов.

Многие радиоактивные изотопы с коротким периодом полураспада, хотя и обнаруживаются после взрыва в воде и морских организмах, в глобальных радиоактив­ных выпадениях почти не встречаются. Здесь в первую очередь присутствуют 90 Sr и 137 Cs с периодом полураспада около 30 лет. Наиболее опасным радионуклидом из непрореагировавших остатков ядерных зарядов является 239 Pu (T 1/2 =24,4-10 3 лет), очень ядовитый как химическое вещество. По мере распада продуктов деления 90 Sr и 137 Cs, он становится основным компонентом загрязнения. К моменту моратория атмосферных испытаний ядерного оружия (1963 г.) активность 239 Рu в окружающей среде со­ставила 2,5-10 16 Бк.

Отдельную группу радионуклидов образуют 3 Н, 24 Na, 65 Zn, 59 Fe, 14 C, 31 Si, 35 S, 45 Ca, 54 Mn, 57,60 Co и другие, возникающие при взаимодействии нейтронов с элементами конструкций и внешней среды. Основными продуктами ядерных реакций с нейтронами в морской среде являются радиоизотопы натрия, калия, фосфора, хлора, брома, кальция, марганца, серы, цинка, происходящие из растворенных в морской воде элементов. Это наведенная актив­ность.

Большая часть радионуклидов, попадающих в морскую среду, имеет постоянно присутствующие в воде аналоги, такие, как 239 Pu, 239 Np, 99 T C) трансплутониевые не характерны для состава морской воды, и живое вещество океана должно приспосабли­ваться к ним заново.

В результате переработки ядерного топлива появляется значительное количество радиоактивных отходов в жидкой, твердой и газообразной формах. Основную массу отходов составляют радиоактивные растворы. Учитывая высокую стоимость переработки и хранения концентратов в специальных хранилищах, некоторые страны предпочитают сливать отходы в океан с речным стоком или сбрасывать их в бетонных блоках на дно глубоководных впадин океанов. Для радиоактивных изотопов Ar, Xe, Em и Т еще не разработаны надежные методы концентрирования, поэтому они могут попадать "в океаны с дождевыми и сточными водами.

При эксплуатации атомных энергетических установок на над­водных и подводных судах, которых насчитывается уже несколько сотен, ежегодно в океан вносят около 3,7-10 16 Бк с ионообменными смолами, около 18,5-10 13 Бк с жидкими отходами и 12,6-10 13 Бк вследствие утечек. Аварийные ситуации также вно­сят значительный вклад в радиоактивность океана. К настоящему времени сумма радиоактивности, привнесенной в океан человеком, не превышает 5,5-10 19 Бк, что еще невелико по сравнению с естественным уровнем (18,5-10 21 Бк). Однако концентрированноcть и неравномерность выпадений радионукли­дов создает серьезную опасность радиоактивного заражения воды и гидробионтов в отдельных районах океана.

2 Антропогенная экология океана новое научное направление в океанологии. В результате антропогенного воздействия в океане возникают дополнительные экологические факторы, способствующие негативной эволюции морских экосистем. Обнаружение этих факторов стимулировало развертывание широких фундаментальных исследований в Мировом океане и зарождение новых научных направлений. К их числу относится антропогенная экология океана. Это новое направление призвано изучать механизмы реагирования организмов на антропогенные воз­действия на уровне клетки, организма, популяции, биоценоза, экосистемы, а также исследовать особенности взаимодействий между живыми организмами и средой обитания в изменившихся условиях.

Объект изучения антропогенной экологии океана - изменение экологических характеристик океана, причем в первую очередь тех изменений, которые имеют значение для экологической оценки состояния биосферы в целом. В основе этих изысканий лежит комплексный анализ состояния морских экосистем с учетом географической зональности и степени антропогенного воздействия.

Антропогенная экология океана применяет для своих целей сле­дующие методы анализа: генетический (оценка канцерогенной и мутагенной опасности), цитологический (изучение клеточного строения морских организмов в нормальном и патологическом состоянии), микробиологический (изучение адаптации микроорга­низмов к токсичным загрязняющим веществам), экологический (познание закономерностей образования и развития популяций и биоценозов в конкретных условиях обитания с целью прогноза их состояния в меняющихся условиях среды), эколого-токсикологический (исследование отклика морских организмов на воздействие загрязнений и определение критических концентраций за­грязняющих веществ), химический (изучение всего комплекса природных и антропогенных химических веществ в морской среде).

Основная задача антропогенной экологии океана состоит в раз­работке научных основ определения критических уровней загряз­няющих веществ в морских экосистемах, оценки ассимиляционной емкости морских экосистем, нормирования антропогенных воздействий на Мировой океан, а также в создании математических моделей экологических процессов для прогноза экологических ситуаций в океане.

Знания о важнейших экологических явлениях в океане (таких, как продукционно-деструкционные процессы, прохождение биогеохимических циклов загрязняющих веществ и т. д.) ограничены недостатком информации. Этим затрудняется прогнозирование экологической ситуации в океане и осуществление природоохран­ных мероприятий. В настоящее время особую значимость приобретает осуществление экологического мониторинга океана, стратегия которого ориентирована на долговременные наблюдения в определенных районах океана с целью создания банка данных, освещающих глобальные перестройки океанических экосистем.

3 Концепция ассимиляционной емкости. По определению Ю. А. Израэля и А. В. Цыбань (1983, 1985), ассимиляционная емкость морской экосистемы А i по данному загрязняющему веществу i (или суммы загрязняющих веществ) и для m-й экосистемы - это максимальная динамическая вмести­мость такого количества загрязняющих веществ (в пересчете на всю зону или единицу объема морской экосистемы), которое может быть за единицу времени накоплено, разрушено, трансформировано (биологическими или химическими превращениями) и вы­ведено за счет процессов седиментации, диффузии или любого другого переноса за пределы объема экосистемы без нарушения ее нормального функционирования.

Суммарное удаление (А i) загрязняющего вещества из морской экосистемы можно записать в виде

где K i - коэффициент запаса, отражающий экологические условия протекания процесса загрязнения в различных зонах морской экосистемы; τ i - время пребывания загрязняющего вещества в морской экосистеме.

Это условие соблюдается при , где С 0 i - критическая концентрация за­грязняющего вещества в морской воде. Отсюда ассимиляционная емкость может быть оценена по формуле (1) при ;.

Все величины, входящие в правую часть уравнения (1) можно непосредственно измерить по данным, полученным в процессе долгопериодных комплексных исследований состояния морской экосистемы. При этом последовательность определения ассимиляционной емкости морской экосистемы к конкретным загрязняющим веществам включает три основных этапа: 1) расчет балансов массы и времени жизни загрязняющих веществ в экосистеме, 2) анализ биотического баланса в экосистеме и 3) оценка критических концентраций воздействия загрязняющих веществ (или экологических ПДК) на функционирование биоты.

Для решения вопросов экологического нормирования антропо­генных воздействий на морские экосистемы расчет ассимиляци­онной емкости наиболее репрезентативен, поскольку он учитывает ассимиляционной емкости предельно допустимая экологическая нагрузка (ПДЭН) водоема ЗВ рассчитывается достаточно просто. Так, при стационарном режиме загрязнения водоема ПДЭН будет равна ассимиляционной емкости.

4 Выводы из оценки ассимиляционной емкости морской экосистемы загрязняющими веществами на примере Балтийского моря. На примере Балтийского моря были рассчитаны значения ассимиляционной емкости для ряда токсичных металлов (Zn, Сu, Pb, Cd, Hg) и органических веществ (ПХБ и БП) (Израэль, Цыбань, Вентцель, Шигаев, 1988).

Средние концентрации токсичных металлов в морской воде оказались на один-два порядка меньше их пороговых доз, а концентрации ПХБ и БП только на порядок меньше. Отсюда коэффициенты запаса для ПХБ и БП оказались меньше, чем для металлов. На первом этапе работы авторы расчета, используя материалы долгопериодных экологических исследований в Балтийском море и литературные источники, определили концентрации загрязняющих веществ в компонентах экосистемы, скорости биоседиментации, потоки веществ на границах экосистемы и активность микробного разрушения органических веществ. Все это позволило составить балансы и рассчитать время «жизни» рассматриваемых веществ в экосистеме. Время «жизни» металлов в экосистеме Балтики оказалось достаточно малым для свинца, кадмия и ртути, несколько большим для цинка и максимальным для меди. Время «жизни» ПХБ и бенз(а)пирена составляет 35 и 20 лет, что определяет необходимость введения системы генетического мониторинга Балтийского моря.

На втором этапе исследований было показано, что наиболее чувствительным к загрязняющим веществам и изменениям экологической обстановки элементом биоты являются планктонные микроводоросли, а следовательно, в качестве процесса - «мишени» следует выбрать процесс первичного продуцирования органического вещества. Поэтому здесь применяются пороговые дозы загрязняющих веществ, установленные для фитопланктона.

Оценки ассимиляционной емкости зон открытой части Балтий­ского моря показывают, что существующий сток цинка, кадмия и ртути соответственно в 2, 20 и 15 раз меньше минимальных значений ассимиляционной емкости экосистемы к этим металлам и не представляет прямой опасности первичному продуцированию. В то же время поступление меди и свинца уже превышает их ассимиляционную емкость, что требует введения специальных мер по ограничению стока. Современное поступление БП еще не достигло минимального значения ассимиляционной емкости, а ПХБ превышает ее. Последнее говорит о настоятельной необходимости дальнейшего снижения сбросов ПХБ в Балтийское море.

Загрязнение морей и океанов

Человек в своей экономической деятельности издавна тянулся к прибрежным районам океанов и морей. И как результат - заселение морских побережий. В настоящее время в прибрежных зонах находится 60 % всех крупных городов с населением свыше миллиона человек. В некогда глухом районе Земли - на берегах Персидского залива - в последние годы появилось 150 промышленных комплексов, в том числе 60 нефтеперерабатывающих заводов, а также сталелитейные, цементные, химические предприятия. Степень урбанизации возрастает там ежегодно на 6-10 %, а численность населения - на 0,5 млн. человек.

По данным статистики, число людей, проживающих на морских побережьях в городах с миллионным населением, к началу XXI в. увеличится вдвое. Предполагается, что и тогда 90 % всех бытовых сточных вод и большой объем стоков промышленных, как и сейчас, без предварительной очистки будут сбрасываться в Мировой океан.

На берегах Средиземного моря расположены страны с населением 250 млн. человек. Ежегодно промышленные предприятия приморских городов выбрасывают в море тысячи тонн различных неочищенных отходов, сюда же сливается неочищенная канализационная вода. Огромные массы ядовитых веществ выносят в море крупные реки.

Миллионы туристов устремляются к Средиземному морю, надеясь «найти там солнце, песчаные пляжи и бирюзовую воду». Солнца там, действительно, много, но вместе с ним на пляже и в воде легко можно приобрести гепатит и грибковые заболевания.

Неудивительно, что, по рекомендации государственных органов здравоохранения Испании, губернатор туристского центра Аликанте запретил использовать для купания 20 пляжей и бухт. Близ Марселя, где туристы имели обыкновение после осмотра замка Ив купаться в море, ученые обнаружили только в 100 мл морской воды около 900 тыс. кишечных палочек, ведущих свое происхождение от фекалий. Это - наивысшая концентрация таких бактерий в Средиземном море.

В Италии карабинеры и пожарные следят за тем, чтобы никто не купался на закрытых властями пляжах. В особенности это касается Неаполя, где в 1973 г. в результате потребления в пищу зараженных моллюсков разразилась эпидемия холеры, в результате которой погибли 22 человека. Даже загорать там разрешено лишь на почтительном расстоянии от берега.

Более 100 из 120 крупных приморских городов Средиземноморья спускают свои канализационные воды неочищенными. Но и тогда, когда от воды не пахнет и в ней не видно грязи, есть причины для тревоги. Голубая средиземноморская вода во многих местах прозрачна до самого дна, но жизни в ней нет: ядовитые промышленные отходы отравили ее.

Естественному процессу обновления воды в Средиземном море препятствует рост содержания нефти, которая сокращает поверхностное испарение. В 1979 г. в 1 м 2 поверхности Средиземного моря содержалось 108 мг нефти. Это значительно выше, чем в таком районе интенсивного судоходства, как Северная Атлантика, где на 1 м 2 поверхности приходится 17,5 мг нефти.

С появлением супертанкеров связаны не только бесспорные достижения научно-технической мысли. Они стали одними из самых злостных виновников загрязнения окружающей среды. В погоне за баснословными прибылями, которые сулит эксплуатация крупных нефтеналивных судов, владельцы танкеров-гигантов пренебрегают элементарными нормами и правилами техники безопасности. В результате преступной небрежности судовладельческих компаний супертанкеры часто терпят кораблекрушения. За последние годы последствия таких катастроф ощутили на себе жители многих районов мира. Однако эффективные меры для предотвращения подобных бедствий пока так и не приняты.

Ежегодно в Средиземное море попадает 3 % нефти из потерпевших катастрофу танкеров. Однако в 10 раз больше нефти сбрасывается в море при их промывке. В бухте итальянского порта Триест, район которого когда-то славился рыбой и панцирными, нефть уничтожила всю флору и фауну.

Еще большую опасность для обитателей морей представляют промышленные отходы, прежде всего ртуть и другие тяжелые металлы. Эти отходы надолго остаются в воде или концентрируются в тканях животных. Отметим, что 85 % всех нечистот попадают в Средиземное море с континентов, причем большая их часть - из удаленных от моря промышленных центров и городов, прежде всего таких индустриальных стран, как Испания, Франция, Италия. Подавляющее количество загрязняющих веществ приносят в Средиземное море реки Рона, По и Эбро.

Почти все промышленные предприятия на испанском побережье Средиземного моря работают с плохо функционирующими очистными сооружениями или совсем без них. На Адриатическом побережье море отравляют 35 тыс. итальянских промышленных предприятий. Лишь одна лагуна Венеции, размеры которой составляют 500 км 2 , принимает неочищенный сброс от 76 заводов.

Сильно загрязнено Мраморное море. Ежегодно танкеры вместе с балластными водами сбрасывают в него более 4 млн. т нефти. Отходы промышленных предприятий, горы мусора на некогда великолепных пляжах, слив канализационных вод привели к тому, что редкий смельчак рискнет здесь искупаться.

Внутреннее Японское море издавна играет большую роль в жизни народа Страны восходящего солнца. Оно не только служит важным источником питания значительной части населения, но и является основной транспортной артерией, связывающей расположенные на его берегах крупные промышленные центры, которые обеспечивают почти 30 % национального дохода страны. Девять префектур этого региона дают ежегодно 52,4 млн. т стали, 1,8 млн. т этилена, более 4,5 млн. т бумаги. Ежедневно перерабатывается около 1870 тыс. баррелей нефти.

Но процветание имеет и оборотную сторону. Бесконтрольное хозяйничанье монополий, стремящихся к получению прибылей любой ценой, привело к сильному загрязнению в этом районе окружающей среды. Недооценка последствий нарушения экологических процессов привела в 50-х годах к человеческим жертвам. В результате ртутного отравления погибло несколько десятков человек в Минамате, рыбацком поселке в южной части острова Кюсю. К 1970 г. заражение окружающей среды приобрело в Японии трагические масштабы, поставив под угрозу жизнь человека.

В принятой в конце 1972 г. Международной конвенции по предотвращению загрязнений морей сбросами отходов указаны, в частности, наиболее вредные продукты химического загрязнения. Это, как уже отмечалось, нефть и нефтепродукты, хлорорганические пестициды, некоторые тяжелые металлы (ртуть, кадмий, свинец).

Количество поступающей за год в Мировой океан нефти, по различным источникам, составляет 5-10 млн. т. По данным ООН, в 1967 г. объем мировой добычи нефти составлял 1,85 млрд. т, в 1970 г. - 2,2 млрд. т. В 1979 г, мировая добыча нефти и газового конденсата составила 3,2 млрд. т. Несомненно, с ростом добычи нефти будет увеличиваться загрязнение Мирового океана. Можно предположить, что размеры загрязнения будут возрастать в связи со стремительным развертыванием добычи нефти на континентальном шельфе. В 1970 г. на таких промыслах добывалась 1/6 часть общего объема нефти, в дальнейшем добыча нефти в этих районах непрерывно увеличивалась.

В 1979 г. Карибский бассейн стал ареной крупнейшей экологической катастрофы в истории нефтеразведки. В результате аварии на расположенной в Мексиканском заливе буровой установке, принадлежащей мексиканской государственной компании «Пемекс», в море в течение нескольких месяцев вытекала нефть. «Черный прибой» неотвратимо надвинулся на северо-восток, покрыв свыше 200 км пляжей американского штата Техас слоем нефти.

В 1978 г. побережье Бретани (Франция), в четвертый раз за последние десять лет, стало ареной морской катастрофы - на прибрежных рифах разбился гигантский супертанкер «Амоко Кадис». 230 тыс. т сырой нефти, находившейся в его танках, разлилось гигантским пятном на 200 км вдоль побережья одного из живописнейших районов Франции. На многие месяцы и даже годы оказались погубленными рыбные и моллюсковые промыслы на десятках километров Бретонского побережья; морской фауне в этом районе был нанесен неисчислимый ущерб.

Нефть, разлитая в море, растекается на поверхности воды, образуя тонкую пленку, которая прерывает обмен воды с газами атмосферы и тем самым нарушает жизнь морского планктона, создающего кислород и первичную продукцию органического вещества в океане.

Нефтяное загрязнение морей пагубно отражается на живых организмах. Нефтепродукты подвергаются естественному окислению весьма медленно, и поэтому их количество увеличивается из года в год. В условиях Арктических морей нефть может сохраняться до 50 лет. На полное окисление 1 л нефти при средних климатических условиях требуется запас кислорода, растворенного в 400 тыс. л морской воды. Потери такого количества кислорода пагубно отражаются на жизни многих морских организмов.

Нефтепродукты загрязняют не только поверхность воды, но и распространяются по всей толще, оседают вместе с илом на дно и способны к вторичному загрязнению воды. Легкие фракции нефти находятся в виде пленки на поверхности и в виде водного раствора в толще воды, а утяжеленные фракции оседают на дно моря. Таким образом, нефть представляет опасность для живых организмов, обитающих на поверхности, в толще воды и на дне.

Установлено, что содержание в воде нефтепродуктов свыше 16 мг/л вызывает гибель рыб, нарушает нормальное развитие икры. Замечено, что случаи катастрофического разлива нефти в море приводят к уничтожению множества морских птиц. Нефть проникает в оперение и изменяет структуру пера, ухудшая плавучесть и теплоизолирующие свойства. Когда птицы начинают чиститься клювом, нефть и мазут проникают внутрь организма. Это приводит к полному отравлению организма. Кроме того, в районе разлива нефти уничтожаются кормовые ресурсы. Это заставляет оставшихся в живых птиц покидать район загрязнения нефтью. Разлившаяся нефть представляет опасность и для крупных морских животных - китов, тюленей и дельфинов. Нефтяная пленка пристает к поверхности тела животных. У тюленей мех теряет теплоизолирущие свойства и вызывает воспаление глаз, которое кончается слепотой.

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Фармацевтическая и продовольственная мафия автора Броуэр Луи

Из книги Занимательно о фитогеографии автора Ивченко Сергей Иванович

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги Леса моря. Жизнь и смерть на континентальном шельфе автора Куллини Джон

Глава 4 Химическое загрязнение окружающей среды и его последствия Организм любого индивидуума в период своего формирования подвергается прямому или косвенному воздействию всех химических субстанций, которые он употребляет в своей повседневной деятельности. Они

Из книги По следам минувшего автора Яковлева Ирина Николаевна

Почему политики должны нести ответственность за медикаментозное загрязнение Самые крупные лаборатории международного масштаба изготавливают не только медикаменты, но в том числе и продукцию для аграрного сектора. Другими словами, жертвами химического загрязнения

Из книги Вода и жизнь на Земле автора Новиков Юрий Владимирович

Спутница океанов Мы уже говорили о культе пальмы у древних народов: шумеров, финикийцев, египтян… И теперь высоко чтят эти растения. Кубинская королевская пальма украшает герб Кубы, пальмовые ветви на флаге Народной Республики Конго, на гербах Венесуэлы и Доминиканской

Из книги Жизнь моря автора Богоров Венианим Григорьевич

Что такое «световое загрязнение» атмосферы и кому оно мешает? Свет от наземных источников – серьезная помеха для астрономических наблюдений. Издавна обсерватории строили вдали от городов. Когда-то и Гринвич, и Пулково, и даже Воробьевы горы были темными уголками, а

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

Какой из океанов наибольший по площади и какой наименьший? Самым большим из океанов является Тихий – его площадь равна 178,68 миллиона квадратных километров. Тихий океан занимает почти треть всей поверхности земного шара. На огромном пространстве Тихого океана могла бы

Из книги автора

В каком из российских морей самые большие приливы? Рекордсменом по высоте приливов для всех морей России (и, кстати, Тихого океана) является Пенжинская губа, расположенная в северо-восточной части залива Шелихова Охотского моря. Разница между приливом и отливом здесь

Из книги автора

Как велика протяженность береговой линии российских морей? Протяженность береговой линии российских морей составляет 60 985 километров (более чем в 1,5 раза превосходит длину окружности земного экватора). При этом длина российского побережья морей Северного Ледовитого

Из книги автора

VI. Загрязнение моря нефтью: преодоление последствий В водах Южной Калифорнии, на участке приблизительно от Пойнт-Консепшен до Пойнт-Фермин, площадью около 2600 квадратных километров, то в одном, то в другом месте морского дна тихо сочится нефть. Это истечение, вероятно,

Из книги автора

НАСТОЯЩИЕ ХОЗЯЕВА ТРИАСОВЫХ МОРЕЙ Но настоящими хозяевами триасовых морей становятся ящеры. Ящеры, которых великая засуха пригнала к воде. Ящеры, которым вновь пришлось стать рыбами, чтобы не погибнуть на суше. Их ноги снова попытались превратиться в плавники. Но

Из книги автора

Загрязнение воды и здоровье Вода может оказывать на здоровье людей не только положительное, но и отрицательное влияние. Прежде всего это связано с качеством употребляемой воды: ее органолептическими свойствами, определяемыми цветом, вкусом и запахом, а также химическим

Из книги автора

Богатства советских морей «Море - наше поле», - говорят рыбаки. Если годовой улов рыбы, добываемый в Советском Союзе, поставить в бочках вдоль Сибирской железнодорожной магистрали, то лента из бочек, уложенных в два ряда, протянется от Калининграда до

Из книги автора

10.8. Загрязнение почв Загрязнение почв пестицидами в Приморье пока изучено недостаточно. Контролирующих организаций, определяющих их содержание в почве, нет. Анализ немногочисленных данных позволяет предположить, что загрязнение пестицидами вызвано безграмотным их