Тепловые электростанции (ТЭЦ, КЭС): разновидности, типы, принцип работы, топливо. ТЭС - это что такое? ТЭС и ТЭЦ: различия

Топливно-энергетический комплекс (ТЭК) РБ и его основные энергосистемы.

Топливно-энергетический комплекс (ТЭК) является важнейшей структурной составляющей национальной экономики, которая обеспечивает функционирование всех ее звеньев и повышение уровня жизни населения. Топливно-энергетический комплекс Республики Беларусьвключает :

Системы добычи, транспорта, хранения, производства и распределения основных видов энергоносителей (природного газа, нефти и продуктов ее переработки, твердых видов топлива, электрической и тепловой энергии).

В ТЭК Беларуси выделяют:

1) топливную промышленность (нефтяную, газовую, торфяную);

2) электроэнергетическую промышленность.
ТЭК имеет развитую производственную инфраструктуру : сеть нефтепроводов и газопроводов, магистральных, высоковольтные линии электропередач.
Нефтяная промышленность : нефтедобывающая и нефтеперерабатывающая промышленность.
Нефтедобывающая промышленность: добыча нефти и первичная подготовка ее для транспортировки и переработки (65 месторождений нефти).

Нефтеперерабатывающая промышленность: обеспечение потребности страны в моторном и котельно-печном топливе, маслах, продуктах для нефтехимического производства (крупнейшим - Новополоцкий НПЗ (ПО «Нафтан»)).

Газовая промышленность : добыча попутного газа, транспортировка, переработка природного и попутного газа, его использование.

Торфяная промышленность : добыча торфа на топливо, для с/х, хим-ой переработки, производство торфобрикетов. Основными видами продукции являются: торфяные брикеты, торф кусковой и сфагновый.

Электроэнергетика : выработка, передача и распределение электрической и тепловой энергии (7,3 % валовой продукции промышленности, 15,9 % основных промышленно-производственных фондов).
Самая крупная электростанция– Лукомльская ГРЭС, мощностью 2560 МВт, вырабатывает более 40 % всей электроэнергии, используя природный газ и топочный мазут, Березовская ГРЭС (установленная мощность - 930 МВт).

В Беларуси построено более 20 гидроэлектростанций небольшой мощности. Сейчас работают 11 станций, наиболее крупные – Осиповичская (2,2тыс. кВт) нар. Свислочьская и Чигиринская (1,5тыс. кВт) пар. Друть.

Теплоэлектроцентра́ль (ТЭЦ) - разновидность тепловой электростанции, которая производит не только электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения.

При такой комбинированной выработке тепловой и электрической энергии в тепловую сеть отдается главным образом теплота отработавшего в турбинах пара, что приводит к снижению расхода топлива на 25 – 30%.

Районные котельные предназначены для централизованного теплоснабжения промышленности и жилищно-коммунального хозяйства, а также для покрытия пиковых тепловых нагрузок в теплофикационных системах. Сооружение их требует меньших капиталовложений и может быть проведено в более короткие сроки, чем сооружение ТЭЦ той же тепловой мощности. Поэтому во многих случаях теплофикацию районов начинают со строительства районных котельных. До ввода в работу ТЭЦ эти котельные являются основным источником теплоснабжения района. После ввода ТЭЦ они используются в качестве пиковых. Котельные сооружают на площадках ТЭЦ или в районах теплопотребления. В них устанавливают водогрейные котлы или паровые котлы низкого давления (1,2 – 2,4 МПа).



8.Использование солнечной энергии в РБ.

Гелиоэнергетика - это получение и использование энергии солнца.

Для прямого преобразования энергии излучения солнца применяют фотоэлектрогенераторы, или фотоэлектрические преобразователи (ФЭП) .

Они получили название солнечных батарей. Осуществляется создание и производство отечественных установок на фотоэлектрических преобразователях. Одна солнечная электростанция размещена в Беловежской пуще для обогрева домов, еще несколько установок используются в чернобыльской зоне.

Создано опытное производство систем горячего водоснабжения, базирующихся на использовании солнечной энергии. Они включают в себя солнечные коллекторы и накопители тепловой энергии. Фирма «Гелиос» организовала производство гелиосистем для нагрева воды.

6.Принципиальная схема АЭС и ее работа. Ядерное горючее.

АЭС отличается от ТЭС тем, что вместо парового котла используют ядерный реактор.

В зависимости от теплоносителя существуют одно-, двух- или трехконтурные конструкции ядерных электроустановок.

Одноконтурные имеют газовый или водяной реакторы; двухконтурные – водо-водяной реакто;, трехконтурные – ядерный ректор с жидкометаллическим теплоносителем.

Первичная энергия на АЭС - внутренняя ядерная энергия, которая при делении ядра выделяется в виде колоссальной кинетической энергии, которая превращается в тепловую.

Установка - называется реактором . Через активную зону реактора проходит вещество теплоноситель, которое служит для отвода тепла (вода, инертные газы). Теплоноситель уносит тепло в парогенератор, отдавая его воде. Образующийся водяной пар поступает в турбину. Регулирование мощности реактора производится с помощью специальных стержней. Они вводятся в активную зону и изменяют поток нейтронов, а значит, и интенсивность ядерной реакции.

Природное ядерное горючее - уран. Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2-3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла.

Осколки деления - это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления.

Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим .

7.Технологический процесс энергоснабжения потребителей.

Работу по энергосбережению в РБ координирует Департамент энергоэффективности при Совете Министров РБ. Он разрабатывает концепцию и стратегию эффективного использования энергоресурсов. В 1998г. вступил закон «Об энергосбережении», который регулирует отношения в процессе рационального использования топливно-энергетических ресурсов.

Важная роль в энергосбережении отводится разработке специальных программ - материалы проводимые в этой области, а также пути использования на различных иерархических уровнях - от отраслей до предприятия, программы содержат комплекс организационных, технических, экономических мероприятий, взаимосогласованных по ресурсам, исполнителям, срокам реализации. Различают: республиканские, отраслевые, региональные, городские, долгосрочные и краткосрочные программы энергосбережения.

В настоящее время в РБ завершается организация многоуровневой системы образования в области энергосбережения. Конечная цель – воспитание общей культуры, бережного обращения с энергоресурсами.

Основные функции субъектов энергетического менеджмента верхнего уровня : правовая и законодательная функция; поиск источников и распределение финансовых ресурсов; энергетический аудит национальной экономики; выработка и координация проведения национальной политики энергосбережения с учетом экономических, технических, социальных аспектов.

9.Ветроэнергетика и перспективы применения в РБ.

Ветроэнергетика - область энергетики, использующую энергию ветра для производства различных видов энергии.

Устройства, преобразующие энергию ветра в механическую, электрическую или тепловую, называются ветроэнергетическими установками (ВЭУ) .

Энергию ветра принято использовать при скорости более 5 м/с. Поскольку периоды безветрия неизбежны, то для исключения перебоев в электроснабжении должны иметь аккумуляторы электрической энергии. Средняя скорость ветра в РБ считается недостаточной для массового развития ветроэнергетики и составляет около 4 м/с. Однако существуют места, где можно устанавливать ветроустановки. Использование этих установок позволит получать пятую часть энергии.

В настоящее время имеются 6 ВЭУ. Беларусь обладает значительным ветроэнергетическим потенциалом. Он оценивается в 1600 МВт. На территории нашей страны выявлено около 1840 площадок, где можно устанавливать ветроэнергетические станции и даже создавать ветроэнергетические парки. Годовая выработка электроэнергии может достигать 6,5 млрд. кВт/ч. Эти площадки представляют собой в основном ряды холмов высотой от 250 м над уровнем моря, где фоновая скорость ветра колеблется от 5 до 8 м/с. На каждой из них можно разместить от 3 до 20 ветроэнергетических установок.

11.Перспективы использования в РБ малой гидроэнергетики.

Малая гидроэенергетика заняла в последнее время устойчивое положение в электроэнергетике. Малая ГЭС с установленной мощностью 1 МВт может вырабатывать около 6000 МВтч в год, предотвращая при этом выброс около 4000 т углекислого газа.

Теоритический гидропотенциал, всех учитываемых водотоков Беларуси, составляет 850 МВт, технически возможный на сегодняшний день – 520 МВт, а экономически и экологически целесообразный – около 250 МВт.

В 1996 г. была принята Программа проектирования, реконструкции и нового строительства малых ГЭС в системе Белэнерго. Результатом ее выполнения является ввод на начало 2005г. в число действующих 18 малых ГЭС. Более существенным шагом станет строительство каскадов ГЭС на самых крупных реках РБ - Западной Двине, Немане, Днепре.

Малая гидроэнергетика переживает третий этап развития. Малые ГЭС разделяют на ГЭС без водохранилища и с водохранилищем. Малые ГЭС не наносят значительного ущерба окружающей среде. Воздействие на рыб и водные экосистемы являются незначительным.

В Минске предполагается строительство малой ГЭС на реке Свислочь мощностью около 80кВт в парке им. Горького не только для получения электрической энергии, но и для использования в качестве демонстрационного объекта по энергосбережению для посетителей парка.

12.Вторичные энергетические ресурсы (ВЭР) и направления использования.

ВЭР - энергетический потенциал продукции, отходов, побочных и промежуточных продуктов, образующихся при технологических процессах, в агрегатах и установках, который не используется в самом агрегате, но может быть частично или полностью использоваться для энергосбережения других агрегатов (процессов).

“Энергетический потенциал” - наличие определённого запаса энергии (физического тепла, потенциальной энергии избыточного давления и напора, кинетической энергии и др.).

ВЭР делятся на 3 основные группы :

1)Горючие (топливные) ВЭР - химическая энергия отходов технологических процессов химической и термохимической переработки сырья (побочные горючие газы плавильных печей (доменный газ, колошниковый, шахтных печей и вагранок, конверторный и т.д.)).

2)Тепловые ВЭР - это тепло отходящих газов при сжигании топлива, тепло воды или воздуха, использованных для охлаждения технологических агрегатов и установок, теплоотходов производства (горячих металлургических шлаков).

3)Избыточного давления (напора) - это потенциальная энергия газов, жидкостей и сыпучих тел, покидающих технологические агрегаты с избыточным давлением (напором), которое необходимо снижать перед последующей ступенью использования этих жидкостей, газов, сыпучих тел или при выбросе их в атмосферу, водоёмы, ёмкости и другие приёмники. Сюда же относится избыточная кинетическая энергия.

13.Местные виды топлива РБ и их характеристика. Условное топливо.

Виды топлива :

Твердое;

Газообразное;

Ядерное.

Твердому виду топлива :

Древесину, другие продукты растительного происхождения;

Уголь (с его разновидностями: каменный, бурый);

Горючие сланцы.

Твердые виды топлива (за исключением сланцев) - продукты разложения органической массы растений (торф, бурый уголь, каменные угли, горючие сланцы (Туровское месторождение в Гомельской области, Любанское - в Солигорском и Любанском районах Минской области).

Жидкое топливо - нефть – смесь жидких углеводородов различных молекулярных весов и групп. Кроме того, в ней содержится некоторое количество жидких кислородных, сернистых и азотистых соединений.

Газообразные виды топлива - природный газ (добываемый попутно с добычей нефти, называемый попутным ). Основные компоненты природного газа - метан СН4 и в небольшом количестве азот N2, высшие углеводороды, двуокись углерода.

Условное топливо – это принятая при расчетах единица учета органического топлива, то есть нефти и ее производных, природного и специально получаемого при перегонке сланцев и каменного угля газа, каменного угля, торфа – которая используется для сличения полезного действия различных видов топлива в их суммарном учете.
Определение количества энергии в заданном виде топлива.

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. «А что это такое?» – спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: «Это ж градирни, ты что, не знаешь?». Она немного смутилась: «А для чего они нужны?» «Ну что-то там охлаждать, вроде бы». «А чего?». Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Согласно Википедии ТЭЦ – сокращенное от теплоэлектроцентраль – это разновидность тепловой станции, которая производит не только электроэнергию, но и является источником тепла, в виде пара или горячей воды.

О том как все устроено, я расскажу ниже, а здесь можно посмотреть парочку упрощенных схем работы станции.

Итак, все начинается с воды. Поскольку вода (и пар, как её производное) на ТЭЦ является основным теплоносителем, перед тем как она попадет в котел, её необходимо предварительно подготовить. Для того, что бы в котлах не образовывалась накипь, на первом этапе, воду необходимо умягчить, а на втором, очистить её от всевозможных примесей и включений.

Происходит все это на территории химического цеха, в котором расположены все эти емкости и сосуды.

Вода перекачивается огромными насосами.

Работа цеха контролируется отсюда.

Вокруг много кнопочек…

Датчиков…

А также совсем непонятных элементов…

Качество воды проверяется в лаборатории. Здесь все по-серьезному…

Полученную здесь воду, в дальнейшем мы будем называть «Чистой водой».

Итак, с водой разобрались, теперь нам нужно топливо. Обычно это газ, мазут или уголь. На Чебоксарской ТЭЦ-2 основным видом топлива является газ, поступающий по магистральному газопроводу Уренгой – Помары – Ужгород. На многих станциях существует пункт подготовки топлива. Здесь природный газ, так же как и вода очищается от механических примесей, сероводорода и углекислого газа.

ТЭЦ – объект стратегический, работающий 24 часа в сутки и 365 дней в году. Поэтому здесь везде, и на всё, есть резерв. Топливо не является исключением. В случае отсутствия природного газа, наша станция может работать на мазуте, который хранится в огромных емкостях, расположенных через дорогу.

Теперь мы получили Чистую воду и подготовленное топливо. Следующий пункт нашего путешествия – котлотурбинный цех.

Состоит он из двух отделений. В первом находятся котлы. Нет, не так. В первом находятся КОТЛЫ. По другому написать, рука не поднимается, каждый, с двенадцатиэтажный дом. Всего на ТЭЦ-2 их пять штук.

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается «Чистая вода». После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его «Чистый пар», потому что он образован из подготовленной воды.

Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Чтобы вывести продукты сгорания, нужна недетская «дымовая» труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленный портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.

Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся «Чистый пар» отпускать на сторону невыгодно. Так как он образован из «Чистой воды», производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. И так по замкнутому кругу. Зато с его помощью и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем-то именно таким образом мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. "А что это такое?" - спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: "Это ж градирни, ты что, не знаешь?". Она немного смутилась: "А для чего они нужны?" "Ну что-то там охлаждать, вроде бы". "А чего?". Потом смутился я, потому что совершенно не знал как выкручиваться дальше.
Может быть этот вопрос так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно! Так что же такое ТЭЦ? Согласно Википедии ТЭЦ - сокращенное от теплоэлектроцентраль - это разновидность тепловой станции, которая производит не только электроэнергию, но и является источником тепла, в виде пара или горячей воды. О том как все устроено, я расскажу ниже, а здесь можно посмотреть парочку упрощенных схем работы станции.

Итак, все начинается с воды. Поскольку вода (и пар, как её производное) на ТЭЦ является основным теплоносителем, перед тем как она попадет в котел, её необходимо предварительно подготовить. Для того, что бы в котлах не образовывалась накипь, на первом этапе, воду необходимо умягчить, а на втором, очистить её от всевозможных примесей и включений. Происходит все это на территории химического цеха, в котором расположены все эти емкости и сосуды.


Вода перекачивается огромными насосами.
Работа цеха контролируется отсюда.
Вокруг много кнопочек...
Датчиков...
А также совсем непонятных элементов... Качество воды проверяется в лаборатории. Здесь все по-серьезному...

Полученную здесь воду, в дальнейшем мы будем называть "Чистой водой". Итак, с водой разобрались, теперь нам нужно топливо. Обычно это газ, мазут или уголь. На Чебоксарской ТЭЦ-2 основным видом топлива является газ, поступающий по магистральному газопроводу Уренгой - Помары - Ужгород. На многих станциях существует пункт подготовки топлива. Здесь природный газ, так же как и вода очищается от механических примесей, сероводорода и углекислого газа. ТЭЦ - объект стратегический, работающий 24 часа в сутки и 365 дней в году. Поэтому здесь везде, и на всё, есть резерв. Топливо не является исключением. В случае отсутствия природного газа, наша станция может работать на мазуте, который хранится в огромных емкостях, расположенных через дорогу.
Теперь мы получили Чистую воду и подготовленное топливо. Следующий пункт нашего путешествия - котлотурбинный цех. Состоит он из двух отделений. В первом находятся котлы. Нет, не так. В первом находятся КОТЛЫ. По другому написать, рука не поднимается, каждый, с двенадцатиэтажный дом. Всего на ТЭЦ-2 их пять штук.
Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается "Чистая вода". После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его "Чистый пар", потому что он образован из подготовленной воды. Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Чтобы вывести продукты сгорания, нужна недетская "дымовая" труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах. Рядом находится труба чуть поменьше. Снова резерв. Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ. В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.
В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.
Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.
Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.
Интересно, а есть такое понятие как промышленный пейзаж, или промышленный портрет? Здесь есть своя красота.
В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб. Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами). Вот так выглядит рабочее место дежурного.
Вокруг сотни кнопок.

И десятки датчиков.
Есть механические, есть электронные. Это у нас экскурсия, а люди работают.
Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).
Оставшийся "Чистый пар" отпускать на сторону невыгодно. Так как он образован из "Чистой воды", производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. И так по замкнутому кругу. Зато с его помощью и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.
В общем-то именно таким образом мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют. Ах, да. А для чего же все-таки нужны градирни?
Оказывается, все очень просто. Чтобы охладить оставшийся "Чистый пар", перед новой подачей в котел, используются все те же теплообменники. Охлаждается он при помощи технической воды, на ТЭЦ-2 ее берут прямо с Волги. Она не требует какой-то специальной подготовки и также может использоваться повторно. После прохождения теплообменника, вода превращается в пар, который остывает в градирнях, конденсирует, и снова превращается в воду. С градирен вода уходит по специальному каналу, после чего, с помощью насосной станции отправляется на повторное использование. Одним словом, градирни нужны, чтобы охлаждать пар, который охлаждает другой пар. Простите за тавтологию...
Вся работа ТЭЦ, контролируется из главного щита управления.
Здесь постоянно находиться дежурный.
Все события заносятся в журнал.
Меня хлебом не корми, дай сфотографировать кнопочки и датчики...


На этом почти все. В завершение осталось немного фотографий станции. Это старая, уже не рабочая труба. Скорее всего скоро ее снесут. На предприятии очень много агитации.

Здесь гордятся своими сотрудниками.
И их достижениями.
Похоже, что не напрасно...
Без преувеличения - настоящие профессионалы своего дела.

1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Обозначения на схеме ТЭС:

  1. Топливное хозяйство;
  2. подготовка топлива;
  3. промежуточный пароперегреватель;
  4. часть высокого давления (ЧВД или ЦВД);
  5. часть низкого давления (ЧНД или ЦНД);
  6. электрический генератор;
  7. трансформатор собственных нужд;
  8. трансформатор связи;
  9. главное распределительное устройство;
  10. конденсатный насос;
  11. циркуляционный насос;
  12. источник водоснабжения (например, река);
  13. (ПНД);
  14. водоподготовительная установка (ВПУ);
  15. потребитель тепловой энергии;
  16. насос обратного конденсата;
  17. деаэратор;
  18. питательный насос;
  19. (ПВД);
  20. шлакозолоудаление;
  21. золоотвал;
  22. дымосос (ДС);
  23. дымовая труба;
  24. дутьевой вентилятов (ДВ);
  25. золоуловитель.

Описание технологической схемы ТЭС:

Обобщая все вышеописанное, получаем состав тепловой электростанции:

  • топливное хозяйство и система подготовки топлива;
  • котельная установка: совокупность самого котла и вспомогательного оборудования;
  • турбинная установка: паровая турбина и ее вспомогательное оборудование;
  • установка водоподготовки и конденсатоочистки;
  • система технического водоснабжения;
  • система золошлокоудаления (для ТЭС, работающих, на твердом топливе);
  • электротехническое оборудование и система управления электрооборудованием.

Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

При сжигании мазута и газа золоуловители не устанавливаются.

При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

На современных ТЭС и ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55% теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5% от общего расхода пара на турбины.

На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.

Современный мир требует огромного количества энергии (электрической и тепловой), которая производится на электростанциях различного типа.

Человек научился добывать энергию из нескольких источников (углеводородное топливо, ядерные ресурсы, падающая вода, ветер и т.д.) Однако и по сей день наиболее востребованными и эффективными остаются тепловые и атомные электростанции, о которых и пойдет речь.

Что такое АЭС?

Атомная электростанция (АЭС) – это объект, на котором для производства энергии используется реакция распада ядерного топлива.

Попытки использования управляемой (то есть контролируемой, прогнозируемой) ядерной реакции для выработки электроэнергии были предприняты советскими и американскими учеными одновременно – в 40-х годах прошлого века. В 50-х годах «мирный атом» стал реальностью, и во многих странах мира стали строить АЭС.

Центральным узлом любой АЭС является ядерная установка, в которой происходит реакция. При распаде радиоактивных веществ происходит выделение огромного количества тепла. Выделяемая тепловая энергия используется для нагрева теплоносителя (как правило, воды), который, в свою очередь, нагревает воду второго контура до перехода ее в пар. Горячий пар вращает турбины, благодаря чему происходит образование электроэнергии.

В мире не утихают споры о целесообразности использования атомной энергии для выработки электричества. Сторонники АЭС говорят об их высокой продуктивности, безопасности реакторов последнего поколения, а также о том, что такие электростанции не загрязняют окружающую среду. Противники утверждают, что АЭС потенциально чрезвычайно опасны, а их эксплуатация и, особенно, утилизация отработанного топлива сопряжены с огромными расходами.

Что такое ТЭС?

Наиболее традиционным и распространенным в мире видом электростанциЙ являются ТЭС. Тепловые электростанции (так расшифровывается данная аббревиатура) вырабатывают электроэнергию за счет сжигания углеводородного топлива – газа, угля, мазута.


Схема работы ТЭС выглядит следующим образом: при сгорании топлива образуется большое количество тепловой энергии, с помощью которой нагревается вода. Вода превращается в перегретый пар, который подается в турбогенератор. Вращаясь, турбины приводят в движение детали электрогенератора, образуется электрическая энергия.

На некоторых ТЭЦ фаза передачи тепла теплоносителю (воде) отсутствует. В них используются газотурбинные установки, в которых турбину вращают газы, полученные непосредственно при сжигании топлива.

Существенным преимуществом ТЭС считается доступность и относительная дешевизна топлива. Однако есть у тепловых станций и недостатки. Это, прежде всего, угроза окружающей среде. При сжигании топлива в атмосферу выбрасывается большое количество вредных веществ. Чтобы сделать ТЭС более безопасными, применяется ряд методов, в том числе: обогащение топлива, установка специальных фильтров, задерживающих вредные соединения, использование рециркуляции дымовых газов и т.п.

Что такое ТЭЦ?

Само название данного объекта напоминает предыдущее, и на самом деле, ТЭЦ, как и тепловые электростанции преобразуют тепловую энергию сжигаемого топлива. Но помимо электроэнергии теплоэлектроцентрали (так расшифровывается ТЭЦ) поставляют потребителям тепло. ТЭЦ особенно актуальны в холодных климатических зонах, где нужно обеспечить жилые дома и производственные здания теплом. Именно поэтому ТЭЦ так много в России, где традиционно используется центральное отопление и водоснабжение городов.

По принципу работы ТЭЦ относятся к конденсационным электростанциям, но в отличие от них, на теплоэлектроцентралях часть выработанной тепловой энергии идет на производство электричества, а другая часть – на нагрев теплоносителя, который и поступает к потребителю.


ТЭЦ более эффективна по сравнению с обычными ТЭС, поскольку позволяет использовать полученную энергию по максимуму. Ведь после вращения электрогенератора пар остается горячим, и эту энергию можно использовать для отопления.

Помимо тепловых, существуют атомные ТЭЦ, которые в перспективе должны сыграть ведущую роль в электро- и теплоснабжении северных городов.