Логические элементы и узлы эвм. Логические элементы и типовые узлы ЭВМ. Типовые механизмы для осуществления периодических движений

Физические компоненты и схемы, составляющие МП и МПС, - это их аппаратная часть. Аппаратура способна выполнять только ограниченный набор элементарных операций. Все прочие функциональные. возможности достигаются программным путем, т. е. путем соответствующей организации некоторой совокупности и последовательности выполнения элементарных машинных операций.

Хотя в МП аппаратные средства подчинены программным, однако как те, так и другие находятся в полном распоряжении разработчика. Поэтому необходимо хорошо знать, какие возможности они предоставляют.

Аппаратная часть МП и МПС представляет собой совокупность многократно повторяющихся типовых логических узлов, представляющих, в свою очередь, схемы из типовых логических элементов.

К типовым логическим узлам относятся триггеры, регистры, счетчики, сумматоры, дешифраторы, мультиплексоры, системы шин, запоминающие устройства и т. д.

С точки зрения способов преобразования информации часть этих узлов может быть классифицирована как комбинационные схемы, с помощью которых выполняются арифметические и логические операции над двумя многоразрядными словами.

Комбинационные схемы - это схемы без памяти.

Другая часть - это последовательностные схемы, осуществляющие операции хранения, сдвига, счета и передачи информации. Последовательностные схемы содержат запоминающие элементы (ЗЭ).

Функциональные возможности МП определяются в основном его комбинационной частью, составляющей основу АЛУ.

Ввиду ограничений на объем пособия ниже будут рассмотрены только шины и кратко охарактеризованы типы запоминающих устройств.

Принцип магистральности дает основной способ уменьшения количества соединений в системах - это применение шин. Число возможных подсоединений к тому или иному блоку лимитируется компоновочными ограничениями интегральных схем или печатных плат. Более того, число связей вообще желательно сводить к минимуму, так как они составляют главную часть стоимости устройства.

Шины - это общие информационные каналы, т. е. каналы, используемые многими устройствами в системе. В общем случае информация по шинам передается в виде слов, представляющих собой группу битов. Отдельные биты слова могут передаваться по отдельным линиям в шине, а могут передаваться и по единственной линии последовательно во времени. В первом случае шины называются параллельными, а во втором - последовательными.

Таким образом, шина - это линия или набор линий, соединяющих между собой отдельные логические устройства и позволяющих какому-то устройству посылать данные одному или нескольким другим устройствам.

Шина может быть однонаправленной - в этом случае одни устройства выступают всегда в качестве посылающих, а другие - всегда в качестве принимающих, шина может быть двунаправленной - в этом случае каждое устройство, подключенное к шине, в какой-то момент может посылать сигналы другим устройствам.

С технической точки зрения способ обмена информацией посредством шин сводится к созданию двунаправленных буферных каскадов с тремя устойчивыми состояниями и реализации временного мультиплексирования каналов обмена.

Примерами физической реализации шин являются: шина специального исполнения, состоящая из гибких проводов, и шина, выполненная в виде печатной схемы. В любой момент времени, зная логическое состояние шины, можно полностью определить путь, который проходят данные в системе от одной точки к другой.

Для микропроцессорных систем наиболее общей является архитектура с тремя шинами: адресной, данных и управления. Адресная шина всегда является однонаправленной (относительно МП).

При использовании шинной организации как внутри кристалла, так и при подключении нескольких БИС к одной внешней шине возникают трудности, обусловленные способами связи нескольких элементов с одной линией общей шины.

Возможность подключения к шине нескольких входов логичен ских элементов ограничивается лишь нагрузочной способностью схем, к выходу которых эта шина присоединена. При использовании мощных буферных схем нагрузочная способность оказывается достаточной для большинства практических случаев применения шинной организации.

Сложнее организуется подключение выходов нескольких элементов к одной шине. Известны три способа решения этой задачи: логическое объединение; объединение с помощью схем с открытым коллектором («монтажная логика»); объединение с использованием схем с тремя состояниями.

Анализ особенностей различных способов организации общих шин в МП и МПС позволяет сделать выводы, которые подтверждаются практическими разработками: при организации внутренних шин МП, как правило, используются логические объединение и объединение с помощью схем с открытым коллектором; при организации внешних по отношению к МП магистралей, как правило, используется логика с тремя состояниями.

Компьютер – это сложное устройство, состоящее из множества взаимосвязанных устройств (процессор, память, контроллеры и т.д.), выполняющие определенные функции по обеспечению вычислительного процесса обработки данных. Каждое устройство выполнено на базе БИС или СБИС и представляет собой совокупность более мелких узлов (АЛУ, УУ, ОЗУ, ПЗУ и т.д.). Работа этих устройств обеспечивается с помощью типовых электронных узлов (СУММАТОРЫ, РЕГИСТРЫ, ТРИГГЕРЫ, ШИФРАТОРЫ, ДЕШИФРАТОРЫ, СДВИГАТЕЛИ), а каждый типовой электронный узел - это совокупность логических элементов (вентилей).

Логический элемент (вентиль) - это наименьшая функциональная часть, на которую может быть разбита ЭВМ при логическом проектировании и технической реализации. Физически реализуются в виде электронных схем, используя три базовые логические операции: и, или, не .

Логические элементы компьютера оперируют с электрическими сигналами (импульсами), имеющие два различные состояния (логически 1 или 0). Наиболее распространенными способами физического представления информации являются импульсный и потенциальный.

При импульсном способе код 1- наличие электрического импульса / код 0 – его отсутствие. Импульс характеризуется амплитудой и длительностью, причем длительность должна быть меньше временного такта машины);

При потенциальном способе код 1 - высокий уровень напряжения / код 0 - низкий уровень напряжения или его отсутствие. Уровень напряжения не меняется в течение всего такта работы машины. Форма и амплитуда сигнала при этом во внимание не принимаются. Фиксируется лишь сам факт наличия или отсутствия потенциала).

Операция НЕ реализована с помощью Инвертора , схема которого имеет вид:

Операция И реализована с помощью Коньюнктора , схема которого имеет вид:

Операция ИЛИ реализована с помощью Дизъюнктора , схема которого имеет вид:

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает до восьми входов и один или два выхода.

Элементы и узлы ЭВМ.

Элемент ЭВМ - наименьшая конструктивная и функциональная часть ЭВМ, которая используется при ее логическом проектировании и технологической реализации. По назначению они различаются на логические, запоминающие и вспомогательные.

Логические элементы реализуют логические операции и применяются как для построения сложных логических схем (узлов), так и для управления работой отдельных блоков и устройств ЭВМ.

Запоминающие элементы предназначены для хранения и выдачи двоичной информации.

Вспомогательные элементы используются чаще всего для энергетического обеспечения и согласования работы различных блоков ЭВМ.

Рассмотрим принцип построения и функционирования элементов и узлов широко применяемых в ЭВМ.

Триггер - элементарный цифровой автомат с двумя устойчивыми состояниями. Состояние 0 на выход Q соответствует выключенному состоянию, а Q=1 - включенному. Триггеры осуществляют запоминание информации и остаются в заданном состоянии после прекращения действия переключающих сигналов. Они широко применяются широко применяются при цифровой обработке информации.
По способу организации логических связей, определяющие особенности функционирования, различают триггеры RS, T, D, JK. Из них JK триггер называется универсальным, так как из него можно получить все остальные виды триггеров.

Принцип работы JK триггера хорошо поясняется на графе переходов.

Схемы включения JK триггера:

Асинхронный Т триггер - счетный триггер, каждые два сигнала на входе Т формируют один сигнал на выходе.

Синхронный Т триггер - счетный триггер, каждые два сигнала на входе С формируют один сигнал на выходе, если на входе Т присутствует логическая 1.

Синхронный D триггер - реализует функцию временной задержки. Функционирует в соответствии со следующей таблицей переходов.

Асинхронный RS триггер - элементарный цифровой автомат с двумя устойчивыми состояниями и двумя входами R и S, функционирующий в соответствии со следующей таблицей переходов.

Синхронный RS триггер - отличается от асинхронных RS триггеров тем, что кроме информационных входов имеет вход синхронизации С. При С=0 триггер находится в режиме хранения информации. При С=1 синхронный триггер работает как асинхронный RS триггер.

Регистры - это узлы ЭВМ, служащие для хранения информации в виде машинных слов или его частей, а так же для выполнения над словами некоторых логических преобразований. Они представляют собой цифровые автоматы Мили, выполненные на триггерах.
Регистры способны выполнять следующие операции:
- установка регистра в состояние 0 или 1 (на всех выходах);
- прием и хранение в регистре n разрядного слова;
- сдвиг хранимого в регистре двоичного кода слова в право или в лево на заданное значение разрядов;
- преобразование кода хранимого слова в последовательный, и наоборот, при приеме или при выдачи двоичных данных;
- поразрядные логические операции.

Ниже показано условно графическое обозначение универсального регистра и назначение его выводов:

Счетчики - узлы ЭВМ, которые осуществляют счет и хранение кода числа подсчитанных сигналов. Они представляют собой цифровые автоматы Мура, в которых новое состояние счетчика определяется его предыдущим состоянием и состоянием логической переменной на входе.
Внутреннее состояние счетчиков характеризуется коэффициентом пересчета К, определяющим число его устойчивых состояний. Основными параметрами являются разрешающая способность (минимальное время между двумя сигналами, которые надежно фиксируются) или максимальное быстродействие и информационная емкость. Обозначение и назначение выводов реверсивного счетчика показано на рисунке ниже.

Дешифратор, или избирательная схема, - это узел ЭВМ, в котором каждой комбинации входных сигналов соответствует наличие сигнала на одной вполне определенной шине на выходе (комбинационное устройство). Дешифраторы широко используются для преобразования двоичных кодов в управляющие сигналы для различных устройств ЭВМ.

Шифратор, или кодер, - это узел ЭВМ, преобразующий унитарный код в некоторый позиционный код. Если выходной код является двоичным позиционным, то шифратор называется двоичным. С помощью шифраторов возможно преобразование цифр десятичных чисел в двоичное представление с использованием любого другого двоично-десятичного кода.

Преобразователи кодов - это узлы ЭВМ, предназначенные для кодирования чисел. В число преобразователей кодов входят: двоично-десятичные преобразователи, преобразователи цифровой индикации, преобразователи прямого кода двоичных чисел в обратный или дополнительный код и т. д.

Мултиплексоры - это узлы, преобразующие параллельные цифровые коды в последовательные. В этом устройстве выход соединяется с одним из входов в зависимости от значения адресных входов. Мультиплексоры широко используются для синтеза комбинационных устройств, так как это способствует значительному уменьшению числа используемых микросхем.

Демултиплексоры - это узлы, преобразующие информацию из последовательной формы в параллельную. Информационный вход D подключается к одному из выходов Qi определяемый адресными сигналами A0 и A1.

Сумматор - это узел, в котором выполняется арифметическая операция суммирования цифровых кодов двух двоичных чисел.

Используя одноразрядные сумматоры можно построить многоразрядные сумматоры.

При рассмотрении структуры любой ЭВМ обычно проводят ее детализацию. Как правило, в структуре ЭВМ выделяют следующие структурные единицы: устройства, узлы, блоки и элементы.

Нижний уровень обработки реализуют элементы. Каждый элемент предназначается для обработки единичных электрических сигналов, соответствующих битам информации. Узлы обеспечивают одновременную обработку группы сигналов - информационных слов. Блоки реализуют некоторую последовательность в обработке информационных слов - функционально обособленную часть машинных операций (блок выборки команд, блок записи-чтения и др.). Устройства предназначаются для выполнения отдельных машинных операций и их последовательностей.

В общем случае любая структурная единица ЭВМ обеспечивает преобразование входной информации Х в выходную У (см. рис. 2.1).

Все современные вычислительные машины строятся на комплексах системах интегральных микросхем (ИС). Электронная микросхема называется интегральной, если ее компоненты и соединения между ними выполнены в едином технологическом цикле, на едином основании и имеют общую защиту от механических воздействий. Каждая микросхема представляет собой миниатюрную электронную схему, сформированную послойно в кристалле полупроводника: кремния, германия и т.д. В состав микропроцессорных наборов включаются различные типы микросхем, но все они должны иметь единый тип межмодульных связей, основанный на стандартизации параметров сигналов взаимодействия (амплитуда, полярность, длительность импульсов и т.п.). Основу набора обычно составляют большие БИС и даже сверхбольшие интегральные схемы. На очереди следует ожидать появления ультра больших ИС (УБИС). Кроме них обычно используются микросхемы с малой и средней степенью интеграции (СИС). Функционально микросхемы могут соответствовать устройству, узлу или блоку, но каждая из них состоит из комбинации простейших логических элементов, реализующих функции формирования, преобразования, запоминания сигналов и т.д.

Элементы ЭВМ можно классифицировать по различным признакам. Наиболее часто такими признаками являются: тип сигналов, назначение элементов, технология их изготовления и т.д.

В ЭВМ широко применяют два способа физического представления сигналов: импульсный и потенциальный. При импульсном способе представления сигналов единичному значению некоторой двоичной переменной ставится в соответствие наличие импульса (тока или напряжения), нулевому значению - отсутствие импульса (рис. 3.1, а). Длительность импульсного сигнала не превышает один такт синхроимпульсов.

При потенциальном или статическом представлении сигналов единично значение двоичной переменной отображается высоким уровнем напряжения, а нулевое значение - низким уровнем (рис. 3.1, б).

Рис. 3.1. а - импульсные сигналы; б - потенциальные сигналы

Независимо от вида сигналов различают последовательный и параллельный коды передачи и представления информации в ЭВМ.

При последовательном коде представления данных используются одиночные шины или линии передачи, в которых сигналы, соответствующие отдельным разрядам данных, разнесены во времени. Обработка такой информации производится последовательно разряд за разрядом. Такой вид представления и передачи данных требует весьма экономичных по аппаратурным затратам схем обработки данных. Время же обработки Определяется числом обрабатываемых сигналов (разрядов).

Параллельный код отображения и передачи информации предполагает параллельную и одновременную фиксацию всех разрядов данных на различных шинах, т.е. параллельный код данных развернут в пространстве. Это дает возможность ускорить обработку во времени, но затраты на аппаратурные средства при этом возрастают пропорционально числу обрабатываемых разрядов.

Во всех вычислительных машинах используются и параллельно-последовательные коды представления информации. При этом информация отображается частями. Части поступают на обработку последовательно, а каждая часть данных представляется параллельным кодом.

По своему назначению элементы делятся на формирующие, логические и запоминающие.

К формирующим элементам относятся различные формирователи, усилители, усилители-формирователи и т.п. Данные элементы служат для выработки определенных электрических сигналов, восстановления их параметров (амплитуды, полярности, мощности, длительности).

В каждой ЭВМ имеются специальные блоки, формирующие сигналы тактовой частоты, серии синхронизирующих и управляющих сигналов, координирующих работу всех схем ЭВМ. Интервал времени между импульсами основной частоты называется тактом. Длительность такта является важной характеристикой ЭВМ, определяющей ее потенциальную производительность. Время выполнения любой операции ЭВМ связано с определенным числом тактов.

Простейшие логические элементы преобразуют входные сигналы в соответствии с элементарными логическими функциями, рассмотренными в п.2.4. В свою очередь, полученные сигналы могут формировать следующий уровень сигналов и т. д. Сложные преобразования в соответствии с требуемыми логическими зависимостями могут приводить к построению многоуровневых схем. Каждая такая схема представляет собой композицию простейших логических схем.

Запоминающим элементом называется элемент, который способен принимать и хранить код двоичной цифры (единицы или нуля). Элементы памяти могут запоминать и сохранять исходные значения некоторых величин, промежуточные значения обработки и окончательные результаты вычислений. Только запоминающие элементы в схемах ЭВМ позволяют проводить обработку информации с учетом ее развития.

Несмотря на различное конструктивное офор­мление и назначение машин, детали и узлы в них в ос­новном одинаковые (типовые, нормальные и стандартные). Сборочные единицы и детали можно разделить на элементы общего назначения (болты, гайки, зубчатые колеса, валы и др.) и элементы специального назначения, которые используются в специальных типах машин (шнек, поршень, цилиндр и др.)- Рассмотрим классификацию элементов обще­го назначения.

Первая группа элементов - соединения - является наи­более общей. Соединения (соединительные детали) предназна­чены для фиксации взаимного положения деталей и объеди­нения их в сборочные единицы и узлы. К ним относятся свар­ные, заклепочные, резьбовые, соединения вал-ступица и др.

Вторая группа элементов - передачи. Они осуществляют передачу энергии от двигателя к исполнительному органу. К этой группе относятся:

    элементы, передающие вращательное движение. Они делятся на передачи зацеплением - цилиндрические, конические, планетарные, волновые, червячные и цепные; передачи трением - ременные, фрикционные, а также валы и соединяющие их муфты. Их основные детали - зубчатые и червячные колеса, червяки, шкивы, звездочки,ремни, цепи;

    элементы, преобразующие движение. Это передачи рычажные, кулачковые, винт-гайка. Их детали - рычаги, тяги, кулачки, копиры, ходовые винты, гайки.

Третья группа элементов включает несущие и базирую щие элементы:

    валы и оси, которые поддерживают вращающиеся детали (кроме того, валы передают вращающий момент);

    подшипники - опоры вращающихся валов и осей, базирующиеся в корпусных деталях;

    направляющие, поддерживающие поступательно движущиеся детали;

    корпусные и несущие детали - основные части редуктора, воспринимающие нагрузки (на них монтируются и базиру­ются остальные детали и узлы).

Отдельные группы составляют:

    устройства для защиты узлов от загрязнений (уплотнения, кожухи, крышки);

    системы для смазывания (форсунки, штуцеры, жиклёры, трубопроводы);

    упругие элементы (пружины, рессоры, амортизаторы).

В особую группу входят элементы специального назначе­ния, например для ЛА характерны винты, шасси, элероны, шпангоуты, лонжероны и др.

Примером механизма, содержащего большинство элементов общего назначения является редуктор. Редукторы меха­низмы, используемые для пониже­ния угловых скоростей и увеличе­ния крутящих моментов, выпол­ненные в виде отдельного агрегата. В соответствии с классификацией редуктор имеет следующие элемен­ты: корпус 1, зубчатое колесо 2, вал 3 , подшипник 4 и муфту 5 .

классификация элементов технических объек­ тов по производственно технологическим признакам :

Металлические детали, изготовляемые механической обра­боткой, литьем, сваркой, штамповкой, ковкой и др.;

Неметаллические детали, получаемые прессованием, фор­мованием, склейкой.

Способ изготовления определяет облик детали и ее прочно­стные характеристики.

В особую группу входят элементы системы управления, включающие электрические и электронные устройства, кото­рые рассматривать не будем.

По характеру нагружения детали можно разделить на вос­принимающие статическую или динамическую нагрузку или ударное воздействие.