Электронные конфигурации атомов элементов малых периодов. Электронные конфигурации атомов

Определите, атомы каких из указанных в ряду элементов имеют на внешнем энергетическом уровне четыре электрона.

Ответ: 35

Пояснение:

Количество электронов на внешнем энергетическом уровне (электронном слое) элементов главных подгрупп равно номеру группы.
Таким образом, из представленных вариантов ответов подходят кремний и углерод, т.к. они находятся в главной подгруппе четвертой группы таблицы Д.И. Менделеева (IVA группа), т.е. верны ответы 3 и 5.

Определите, у атомов каких их указанных в ряду элементов в основном состоянии число неспаренных электронов на внешнем уровне равно 1.

Запишите в поле ответа номера выбранных элементов.

Ответ: 24

Пояснение:

Барий — элемент главной подгруппы второй группы и шестого периода Периодической системы Д. И. Менделеева, следовательно, электронная конфигурация его внешнего слоя будет 6s 2 . На внешнем 6s s -орбитали, атома бария расположено 2 спаренных электрона с противоположными спинами (полное заполнение подуровня).

Алюминий — элемент главной подгруппы третьей группы и третьего периода Периодической системы, и электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1: на 3s -подуровне (состоит из одной s -орбитали) расположено 2 спаренных электрона с противоположными спинами (полное заполнение), а на 3p -подуровне — один неспаренный электрон. Таким образом, у алюминия в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3 : на 2s -подуровне расположено 2 спаренных электрона с противоположными спинами, а на 2p p -орбиталей (p x , p y , p z ) — три неспаренных электрона, каждый из которых находится на каждой орбитали. Таким образом, у алюминия в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы, электронная конфигурация внешнего слоя атома хлора — 3s 2 3p 5 : на 3s -подуровне расположено 2 спаренных электрона с противоположными спинами, а на 3p -подуровне, состоящего из трех p -орбиталей (p x , p y , p z ) — 5 электронов: 2 пары спаренных электронов на орбиталях p x , p y и один неспаренный — на орбитали p z. Таким образом, у хлора в основном состоянии число неспаренных электронов на внешнем энергетическом уровне равно 1.

Кальций — элемент главной подгруппы второй группы и четвертого периода Периодической системы Д. И. Менделеева. Электронная конфигурация его внешнего слоя схожа с электронной конфигурацией атома бария. На внешнем 4s -подуровне, состоящем из одной s -орбитали, атома кальция расположено 2 спаренных электрона с противоположными спинами (полное заполнение подуровня).

Определите, у атомов каких их указанных в ряду элементов все валентные электроны расположены на 4s -энергетическом подуровне.

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Пояснение:

s 2 3p 5 , т.е. валентные электроны хлора расположены на 3s- и 3p -подуровнях (3-ий период).

Калий — элемент главной подгруппы первой группы и четвертого периода Периодической системы, и электронная конфигурация внешнего слоя атома калия — 4s 1 , т.е. единственный валентный электрон атома калия расположен на 4s -подуровне (4-ый период).

Бром — элемент главной подгруппы седьмой группы и четвертого периода Периодической системы, электронная конфигурация внешнего слоя атома брома — 4s 2 4p 5 , т.е. валентные электроны атома брома расположены на 4s- и 4p -подуровнях (4-ый период).

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома фтора — 2s 2 2p 5 , т.е. валентные электроны атома фтора расположены на 2s- и 2p- подуровнях. Однако, ввиду высокой электроотрицательности фтора только единственный электрон, расположенный на 2p- подуровне, участвует в образовании химической связи.

Кальций — элемент главной подгруппы второй группы и четверного периода Периодической системы Д. И. Менделеева, электронная конфигурация его внешнего слоя — 4s 2 , т.е. валентные электроны расположены на 4s -подуровне (4-ый период).

Определите, у атомов каких их указанных в ряду элементов валентные электроны расположены на третьем энергетическом уровне.

Запишите в поле ответа номера выбранных элементов.

Ответ: 15

Пояснение:

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя хлора — 3s 2 3p 5 , т.е. валентные электроны хлора расположены на третьем энергетическом уровне (3-ий период).

s 2 2p 3 , т.е. валентные электроны азота расположены на втором энергетическом уровне (2-ой период).

Углерод — элемент главной подгруппы четвертой группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома углерода — 2s 2 2p 2 , т.е. валентные электроны атома углерода расположены на втором энергетическом уровне (2-ой период).

Бериллий — элемент главной подгруппы второй группы и второго периода Периодической системы, электронная конфигурация внешнего слоя атома бериллия — 2s 2 , т.е. валентные электроны атома бериллия расположены на втором энергетическом уровне (2-ой период).

Фосфор — элемент главной подгруппы пятой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация его внешнего слоя — 3s 2 3p 3 , т.е. валентные электроны атома фосфора расположены на третьем энергетическом уровне (3-ий период).

Определите, у атомов каких их указанных в ряду элементов на d -подуровнях электронов нет.

Запишите в поле ответа номера выбранных элементов.

Ответ: 12

Пояснение:

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация атома хлора — 1s 2 2s 2 2p 6 3s 2 3p 5 , т.е. d -подуровня у атома хлора не существует.

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация атома фтора — 1s 2 2s 2 2p 5 , т.е. d -подуровня у атома фтора также не существует.

Бром — элемент главной подгруппы седьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома брома — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 , т.е. у атома брома существует полностью заполненный 3d -подуровень.

Медь — элемент побочной подгруппы первой группы и четвертого периода Периодической системы, электронная конфигурация атома меди — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 , т.е. у атома меди существует полностью заполненный 3d -подуровень.

Железо — элемент побочной подгруппы восьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома железа — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 , т.е. у атома железа существует незаполненный 3d -подуровень.

Определите, атомы каких из указанных в ряду элементов относятся к s -элементам.

Запишите в поле ответа номера выбранных элементов.

Ответ: 15

Пояснение:

Гелий — элемент главной подгруппы второй группы и первого периода Периодической системы Д. И. Менделеева, электронная конфигурация атома гелия — 1s 2 , т.е. валентные электроны атома гелия расположены только на 1s -подуровне, следовательно, гелий можно отнести к s -элементам.

Фосфор — элемент главной подгруппы пятой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома фосфора — 3s 2 3p 3 , следовательно, фосфор относится к p -элементам.

s 2 3p 1 , следовательно, алюминий относится к p -элементам.

Хлор — элемент главной подгруппы седьмой группы и третьего периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома хлора — 3s 2 3p 5 , следовательно, хлор относится к p -элементам.

Литий — элемент главной подгруппы первой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома лития — 2s 1 , следовательно, литий относится к s -элементам.

Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную конфигурацию внешнего энергетического уровня ns 1 np 2 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 12

Пояснение:

Бор — элемент главной подгруппы третьей группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация атома бора в основном состоянии — 2s 2 2p 1 . При переходе атома бора в возбужденное состояние электронная конфигурация становится 2s 1 2p 2 за счет перескока электрона с 2s- на 2p- орбиталь.

Алюминий — элемент главной подгруппы третьей группы и третьего периода Периодической системы, электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1 . При переходе атома алюминия в возбужденное состояние электронная конфигурация становится 3s 1 3 p 2 за счет перескока электрона с 3s- на 3p- орбиталь.

Фтор — элемент главной подгруппы седьмой группы и второго периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома фтора — 3s 2 3p 5 . В данном случае в возбужденном состоянии невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Железо — элемент побочной подгруппы восьмой группы и четвертого периода Периодической системы Д. И. Менделеева, электронная конфигурация внешнего слоя атома железа — 4s 2 3d 6 . В данном случае в возбужденном состоянии также невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, и электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3 . В данном случае в возбужденном состоянии также невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2 .

Определите, для атомов каких из указанных в ряду элементов возможен переход в возбужденное состояние.

Запишите в поле ответа номера выбранных элементов.

Ответ: 23

Пояснение:

Рубидий и цезий — элементы главной подгруппы первой группы Периодической системы Д. И. Менделеева, являются щелочными металлами, у атомов которых на внешнем энергетическом уровне расположен один электрон. Поскольку s -орбиталь для атомов данных элементов является внешней, невозможен перескок электрона с s — на p -орбиталь, и следовательно, не характерен переход атома в возбужденное состояние.

Атом азота не способен переходить в возбужденное состояние т.к. заполняемым у него является 2-й энергетический уровень и на этом энергетическом уровне отсутствуют свободные орбитали.

Алюминий — элемент главной подгруппы третьей группы Периодической системы химических элементов, электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1 . При переходе атома алюминия в возбужденное состояние происходит перескок электрона с 3s- на 3p- орбиталь, и электронная конфигурация атома алюминия становится 3s 1 3 p 2 .

Углерод — элемент главной подгруппы четвертой группы Периодической системы, электронная конфигурация внешнего слоя атома углерода — 2s 2 2p 2 . При переходе атома углерода в возбужденное состояние происходит перескок электрона с 2s- на 2p- орбиталь, и электронная конфигурация атома углерода становится 2s 1 2p 3 .

Определите, атомам каких из указанных в ряду элементов соответствует электронная конфигурация внешнего электронного слоя ns 2 np 3 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 23

Пояснение:

Электронная конфигурация внешнего электронного слоя ns 2 np 3 говорит о том, что заполняемым у искомых элементов является p подуровень, т.е. это p -элементы. Все p -элементы расположены в 6-ти последних ячейках каждого периода в группе, номер которой равен сумме электронов на s и p подуровнях внешнего слоя, т.е. 2+3 = 5. Таким образом искомые элементы — азот и фосфор.

Определите, атомы каких из указанных в ряду элементов имеют сходную конфигурацию внешнего энергетического уровня.

Запишите в поле ответа номера выбранных элементов.

Ответ: 34
Среди перечисленных элементов сходную электронную конфигурацию имеют бром и фтор. Электронная конфигурация внешнего слоя имеет вид ns 2 np 5

Определите, атомы каких из указанных в ряду элементов имеют полностью завершенный второй электронный уровень.

Запишите в поле ответа номера выбранных элементов.

Ответ: 13

Пояснение:

Заполненный 2-й электронный уровень имеет благородный газ неон, а также любой химический элемент, расположенный в таблице Менделеева после него.

Определите, у атомов каких из указанных в ряду элементов для завершения внешнего энергетического уровня не достает 2 электронов.

Запишите в поле ответа номера выбранных элементов.

Ответ: 34

До завершения внешнего электронного уровня 2 электрона недостает p -элементам шестой группы. Напомним, что все p -элементы расположены в 6-ти последних ячейках каждого периода.

Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную формулу внешнего энергетического уровня ns 1 np 3 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 24

Пояснение:

s 1 np 3 говорит нам о том, что на внешнем энергетическом уровне (электронном слое) находится 4 электрона (1+3). Среди указанных элементов 4 электрона на внешнем уровне имеют только атомы кремния и углерода.

Электронная конфигурация внешнего энергетического уровня данных элементов в основном состоянии имеет вид ns 2 np 2 , а в возбужденном ns 1 np 3 (при возбуждении атомов углерода и кремния происходит распаривание электронов s-орбитали и один электрон попадает на свободную p -орбиталь).

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют электронную формулу внешнего энергетического уровня ns 2 np 4 .

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Пояснение:

Формула внешнего энергетического уровня ns 2 np 4 говорит нам о том, что на внешнем энергетическом уровне (электронном слое) находится 6 электронов (2+4). Количество электронов на внешнем электронном уровне для элементов главных подгрупп всегда равно номеру группы. Таким образом, электронную конфигурацию ns 2 np 4 среди указанных элементов имеют атомы селена и серы, так как данные элементы расположены в VIA группе.

Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют только один неспаренный электрон.

Запишите в поле ответа номера выбранных элементов.

Ответ: 25

Определите, атомы каких из элементов имеет конфигурацию внешнего электронного уровня ns 2 np 3 .

Ответ: 45

Определите, атомы каких из указанных в ряду элементов в основном состоянии не содержат неспаренных электронов.
Запишите в поле ответа номера выбранных элементов.

Задача 1 . Напишите электронные конфигурации следующих элементов: N , Si , F е, Кr , Те, W .

Решение. Энергия атомных орбиталей увеличивается в следующем порядке:

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d .

На каждой s -оболочке (одна орбиталь) может находиться не более двух электронов, на p -оболочке (три орбитали) - не более шести, на d -оболочке (пять орбиталей) - не более 10 и на f -оболочке (семь орбиталей) - не более 14.

В основном состоянии атома электроны занимают орбитали с наименьшей энергией. Число электронов равно заряду ядра (атом в целом нейтрален) и порядковому номеру элемента. Например, в атоме азота - 7 электронов, два из которых находятся на 1s -орбитали, два - на 2s -орбитали, и оставшиеся три электрона - на 2p -орбиталях. Электронная конфигурация атома азота:

7 N : 1s 2 2s 2 2p 3 . Электронные конфигурации остальных элементов:

14 Si: 1s 2 2s 2 2p 6 3s 2 3p 2 ,

26 F е: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 ,

36 Кr: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 ,

52 Те: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 4 ,

74 Те: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 4 .

Задача 2 . Какой инертный газ и ионы каких элементов имеют одинаковую электронную конфигурацию с частицей, возникающей в результате удаления из атома кальция всех валентных электронов?

Решение. Электронная оболочка атома кальция имеет струк­туру 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 . При удалении двух валентных электронов образуется ион Са 2+ с конфигурацией 1s 2 2s 2 2р 6 Зs 2 Зр 6 . Такую же электронную конфигурацию имеют атом Ar и ионы S 2- , Сl — , К + , Sc 3+ и др.

Задача 3 . Могут ли электроны иона Аl 3+ находиться на следующих орбиталях: а) 2р; б) 1р; в) 3d ?

Решение. Электронная конфигурация атома алюминия: 1s 2 2s 2 2p 6 3s 2 3p 1 . Ион Al 3+ образуется при удалении трех валентных электронов из атома алюминия и имеет электронную конфи­гурацию 1s 2 2s 2 2p 6 .

а) на 2р-орбитали электроны уже находятся;

б) в соответствии с ограничениями, накладываемыми на квантовое число l (l = 0, 1,…n -1), при n = 1 возможно только значение l = 0, следовательно, 1p -орбиталь не существует;

в) на Зd -орбитали электроны могут находиться, если ион - в возбужденном состоянии.

Задача 4. Напишите электронную конфигурацию атома неона в первом возбужденном состоянии.

Решение. Электронная конфигурация атома неона в основном состоянии – 1s 2 2s 2 2p 6 . Первое возбужденное состояние получается при переходе одного электрона с высшей занятой орбитам (2р) на низшую свободную орбиталь (3s ). Электронная конфигурация атома неона в первом возбужденном состоянии – 1s 2 2s 2 2p 5 3s 1 .

Задача 5 . Каков состав ядер изотопов 12 C и 13 C , 14 N и 15 N ?

Решение. Число протонов в ядре равно порядковому номеру элемента и одинаково для всех изотопов данного элемента. Число нейтронов равно массовому числу (указываемому слева вверху от номера элемента) за вычетом числа протонов. Разные изотопы одного и того же элемента имеют разные числа нейтронов.

Состав указанных ядер:

12 С: 6р + 6n ; 13 С: 6р + 7n ; 14 N : 7p + 7n ; 15 N : 7p + 8n .

Заполнение орбиталей в не возбужденном атоме осуществляется таким образом, чтобы энергия атома была минимальной (принцип минимума энергии). Сначала заполняются орбитали первого энергетического уровня, затем второго, причем сначала заполняется орбиталь s-подуровня и лишь затем орбитали p-подуровня. В 1925 г. швейцарский физик В. Паули установил фундаментальный квантово-механический принцип естествознания (принцип Паули, называемый также принципом запрета или принципом исключения). В соответствии с принципом Паули:

в атоме не может быть двух электронов, имеющих одинаковый набор всех четырех квантовых чисел.

Электронную конфигурацию атома передают формулой, в которой указывают заполненные орбитали комбинацией цифры, равной главному квантовому числу, и буквы, соответствующей орбитальному квантовому числу. Верхним индексом указывают число электронов на Данных орбиталях.

Водород и гелий

Электронная конфигурация атома водорода 1s 1 , а гелия 1s 2 . Атом водорода имеет один неспаренный электрон, а атом гелия - два спаренных электрона. Спаренные электроны имеют одинаковые значения всех квантовых чисел, кроме спинового. Атом водорода может отдать свой электрон и превратиться в положительно заряженный ион - катион Н + (протон), не имеющий электронов (электронная конфигурация 1s 0). Атом водорода может присоединить один электрон и превратиться в отрицательно заряженный ион Н - (гидрид-ион) с электронной конфигурацией 1s 2 .

Литий

Три электрона в атоме лития распределяются следующим образом: 1s 2 1s 1 . В образовании химической связи участвуют электроны только внешнего энергетического уровня, называемые валентными. У атома лития валентным является электрон 2s-подуровня, а два электрона 1s-подуровня - внутренние электроны. Атом лития достаточно легко теряет свой валентный электрон, переходя в ион Li + , имеющий конфигурацию 1s 2 2s 0 . Обратите внимание, что гидрид-ион, атом гелия и катион лития имеют одинаковое число электронов. Такие частицы называются изоэлектронными. Они имеют сходную электронную конфигурацию, но разный заряд ядра. Атом гелия весьма инертен в химическом отношении, что связано с особой устойчивостью электронной конфигурации 1s 2 . Незаполненные электронами орбитали называют вакантными. В атоме лития три орбитали 2p-подуровня вакантные.

Бериллий

Электронная конфигурация атома бериллия - 1s 2 2s 2 . При возбуждении атома электроны с более низкого энергетического подуровня переходят на вакантные орбитали более высокого энергетического подуровня. Процесс возбуждения атома бериллия можно передать следующей схемой:

1s 2 2s 2 (основное состояние) + → 1s 2 2s 1 2p 1 (возбужденное состояние).

Сравнение основного и возбужденного состояний атома бериллия показывает, что они различаются числом неспаренных электронов. В основном состоянии атома бериллия неспаренных электронов нет, в возбужденном их два. Несмотря на то что при возбуждении атома в принципе любые электроны с более низких по энергии орбиталей могут переходить на более высокие орбитали, для рассмотрения химических процессов существенными являются только переходы между энергетическими подуровнями с близкой энергией.

Это объясняется следующим. При образовании химической связи всегда выделяется энергия, т. е. совокупность двух атомов переходит в энергетически более выгодное состояние. Процесс возбуждения требует затрат энергии. При распаривании электронов в пределах одного энергетического уровня затраты на возбуждение компенсируются за счет образования химической связи. При распаривании электронов в пределах разных уровней затраты на возбуждение столь велики, что не могут быть компенсированы образованием химической связи. В отсутствие партнера по возможной химической реакции возбужденный атом выделяет квант энергии и возвращается в основное состояние - такой процесс называется релаксацией.

Бор

Электронные конфигурации атомов элементов 3-го периода Периодической системы элементов будут в определенной степени аналогичны приведенным выше (нижним индексом указан атомный номер):

11 Na 3s 1
12 Mg 3s 2
13 Al 3s 2 3p 1
14 Si 2s 2 2p2
15 P 2s 2 3p 3

Однако аналогия не является полной, так как третий энергетический уровень расщепляется на три подуровня и у всех перечисленных элементов имеются вакантные d-орбитали, на которые могут при возбуждении переходить электроны, увеличивая мультиплетность. Особо это важно для таких элементов, как фосфор , сера и хлор .

Максимальное число неспаренных электронов в атоме фосфора может достигать пяти:

Этим объясняется возможность существования соединений, в которых валентность фосфора равна 5. Атом азота , имеющий конфигурацию валентных электронов в основном состоянии такую же, как и атом фосфора , образовать пять ковалентных связей не может.

Аналогичная ситуация возникает при сравнении валентных возможностей кислорода и серы , фтора и хлора . Распаривание электронов в атоме серы приводит к появлению шести неспаренных электронов:

3s 2 3p 4 (основное состояние) → 3s 1 3p 3 3d 2 (возбужденное состояние).

Это отвечает шести валентному состоянию, которое для кислорода недостижимо. Максимальная валентность азота (4) и кислорода (3) требует более детального объяснения, которое будет приведено позднее.

Максимальная валентность хлора равна 7, что соответствует конфигурации возбужденного состояния атома 3s 1 3p 3 d 3 .

Наличие вакантных Зd-орбиталей у всех элементов третьего периода объясняется тем, что, начиная с 3-го энергетического уровня, происходит частичное перекрывание подуровней разных уровней при заполнении электронами. Так, 3d-подуровень начинает заполняться только после того, как будет заполнен 4s-подуровень. Запас энергии электронов на атомных орбиталях разных подуровней и, следовательно, порядок их заполнения, возрастает в следующем порядке:

Раньше заполняются орбитали, для которых сумма первых двух квантовых чисел (n + l) меньше; при равенстве этих сумм сначала заполняются орбитали с меньшим главным квантовым числом.

Эту закономерность сформулировал В. М. Клечковский в 1951 г.

Элементы, в атомах которых происходит заполнение электронами s-подуровня, называются s-элементами. К ним относятся по два первых элемента каждого периода: водород , Однако уже у следующего d-элемента - хрома - наблюдается некоторое «отклонение» в расположении электронов по энергетическим уровням в основном состоянии: вместо ожидаемых четырех неспаренных электронов на 3d-подуровне в атоме хрома имеются пять неспаренных электронов на 3d-подуровне и один неспаренный электрон на s-подуровне: 24 Cr 4s 1 3d 5 .

Явление перехода одного s-электрона на d-подуровень часто называют «проскоком» электрона. Это можно объяснить тем, что орбитали заполняемого электронами d-подуровня становятся ближе к ядру вследствие усиления электростатического притяжения между электронами и ядром. Вследствие этого состояние 4s 1 3d 5 становится энергетически более выгодным, чем 4s 2 3d 4 . Таким образом, наполовину заполненный d-подуровень (d 5) обладает повышенной стабильностью по сравнению с иными возможными вариантами распределения электронов. Электронная конфигурация, отвечающая существованию максимально возможного числа распаренных электронов, достижимая у предшествующих d-элементов только в результате возбуждения, характерна для основного состояния атома хрома. Электронная конфигурация d 5 характерна и для атома марганца : 4s 2 3d 5 . У следующих d-элементов происходит заполнение каждой энергетической ячейки d-подуровня вторым электроном: 26 Fe 4s 2 3d 6 ; 27 Co 4s 2 3d 7 ; 28 Ni 4s 2 3d 8 .

У атома меди достижимым становится состояние полностью заполненного d-подуровня (d 10) за счет перехода одного электрона с 4s-под-уровня на 3d-подуровень: 29 Cu 4s 1 3d 10 . Последний элемент первого ряда d-элементов имеет электронную конфигурацию 30 Zn 4s 23 d 10 .

Общая тенденция, проявляющаяся в устойчивости d 5 и d 10 конфигурации, наблюдается и у элементов ниже лежащих периодов. Молибден имеет электронную конфигурацию, аналогичную хрому : 42 Mo 5s 1 4d 5 , а серебро - меди : 47 Ag5s 0 d 10 . Более того, конфигурация d 10 достигается уже у палладия за счет перехода обоих электронов с 5s-орбитали на 4d-орбиталь: 46Pd 5s 0 d 10 . Существуют и другие отклонения от монотонного заполнения d-, а также f-орбиталей.


Электронная конфигурация химических элементов - это отслеживание месторасположения электронов в его атомах. Электроны могут находиться в оболочках, подоболочках и на орбиталях. От распределения электронов зависит валентность элемента, его химическая активность и способность вступать во взаимодействие с другими веществами.

Как записывается электронная конфигурация

Расположение атомов обычно записывается для тех частиц химических элементов, которые находятся в основном состоянии. Если атом возбужден, запись будет называться возбужденной конфигурацией. Определение электронной конфигурации, применимой в том или ином случае, зависит от трех правил, которые справедливы для атомов всех химических элементов.

Принцип заполнения

Электронная конфигурация атома должна соответствовать принципу заполнения, согласно которому электроны атомов заполняют орбитали по возрастающей - от низшего энергетического уровня к высшему. Низшие орбитали любого атома всегда заполняются в первую очередь. Потом электроны заполняют существующие орбитали второго энергетического уровня, затем орбиталь s, а лишь в конце - орбиталь p-подуровня.

На письме электронная конфигурация химических элементов передается формулой, в которой рядом с наименованием элемента указывают комбинацию чисел и литер, соответствующую положению электронов. Верхний показатель обозначает количество электронов на данных орбиталях.

Например, атом водорода обладает единственным электроном. Согласно принципу заполнения, этот электрон находится на s-орбитали. Таким образом, электронная конфигурация водорода будет равна 1s1.

Принцип запрета Паули

Второе правило заполнения орбиталей является частным случаем более обобщенного закона, который открыл швейцарский физик Ф. Паули. Согласно этому правилу, в любом химическом элементе нет пары электронов, имеющих одинаковый набор квантовых чисел. Поэтому на любой орбитали одновременно могу находиться не более двух электронов, и то лишь только в случае, если они имеют неодинаковые спины.

Принцип запрета Паули может быть рассмотрен на конкретном примере. Электронная конфигурация атома бериллия может быть записана, как 1s 2 2s 2 . При попадании в атом кванта энергии атом переходит в возбужденное состояние. Это может быть записано так:

1s 2 2s 2 (обычное состояние) + → 1s 2 2s 1 2p 1 (возбужденное состояние).

Если сравнить электронные конфигурации бериллия в обычном и возбужденном состоянии, можно заметить, что число неспаренных электронов у них неодинаковое. Электронная конфигурация бериллия показывает отсутствие неспаренных электронов в обычном состоянии. После попадания в атом кванта энергии появляются два неспаренных электрона.

В принципе, в любом химическом элементе электроны могут переходить на орбитали с более высокими энергиями, но для химии представляют интерес лишь те переходы, которые осуществляются между подуровнями с близкими значениями энергий.

Объяснить эту закономерность можно следующим образом. Образование химической связи всегда сопровождается выделением энергии, потому что атомы переходят в энергетически выгодное состояние. Распаривание электронов на одном энергетическом уровне несет в себе такие затраты энергии, какие вполне компенсируются после образования химической связи. Энергетические затраты на распаривание электронов разных химических уровней оказываются настолько велики, что химическая связь не в состоянии их компенсировать. Если нет химического партнера, возбужденный атом выделяет квант энергии и возвращается в нормальное состояние - этот процесс ученые называют релаксацией.

Правило Гунда

Электронная конфигурация атома подчиняется закону Гунда, согласно которому заполнение орбиталей одной подоболочки начинается электронами, имеющими одинаковый спин. Лишь после того, как все одиночные электроны займут установленные орбитали, к ним присоединяются заряженные частички с противоположным спином.

Правило Гунда наглядно подтверждает электронная конфигурация азота. Атом азота имеет 7 электронов. Электронная конфигурация этого химического элемента выглядит так: ls22s22p3. Все три электрона, которые располагаются на 2р-подоболочке, должны находиться поодиночке, занимая каждую из трех 2-р орбиталей, и все спины при этом у них должны быть параллельны.

Эти правила помогают не только понять, чем обусловлена электронная конфигурация элементов периодической системы, но и понять процессы, происходящие внутри атомов.

Электронные конфигурации атомов элементов Периодической системы.

Распределение электронов по различным АО называют электронной конфигурацией атома . Электронная конфигурация с наименьшей энергией соответствует основному состоянию атома, остальные конфигурации относятся к возбужденным состояниям .

Электронную конфигурацию атома изображают двумя способами – в виде электронных формул и электронографических диаграмм. При написании электронных формул используют главное и орбитальное квантовые числа. Подуровень обозначают с помощью главного квантового числа (цифрой) и орбитального квантового числа (соответствующей буквой). Число электронов на подуровне характеризует верхний индекс. Например, для основного состояния атома водорода электронная формула: 1s 1 .

Более полно строение электронных уровней можно описать с помощью электронографических диаграмм, где распределение по подуровням представляют в виде квантовых ячеек. Орбиталь в этом случае принято условно изображать квадратом, около которого проставлено обозначение подуровня. Подуровни на каждом уровне должны быть немного смещены по высоте, так как их энергия несколько различается. Электроны изображаются стрелками или ↓ в зависимости от знака спинового квантового числа. Электронографическая диаграмма атома водорода:

Принцип построения электронных конфигураций многоэлектронных атомов состоит в добавлении протонов и электронов к атому водорода. Распределение электронов по энергетическим уровням и подуровням подчиняются рассмотренным ранее правилам: принципу наименьшей энергии, принципу Паули и правилу Хунда.

С учетом структуры электронных конфигураций атомов все известные элементы в соответствии со значением орбитального квантового числа последнего заполняемого подуровня можно разбить на четыре группы: s -элементы, p -элементы, d -элементы, f -элементы.

В атоме гелия Не (Z=2) второй электрон занимает 1s -орбиталь, его электронная формула: 1s 2 . Электронографическая диаграмма:

Гелием заканчивается первый самый короткий период Периодической системы элементов. Электронную конфигурацию гелия обозначают .

Второй период открывает литий Li (Z=3), его электронная формула: Электронографическая диаграмма:

Далее приведены упрощенные электронографические диаграммы атомов элементов, орбитали одного энергетического уровня которых расположены на одной высоте. Внутренние, полностью заполненные подуровни, не показаны.

После лития следует бериллий Ве (Z=4), в котором дополнительный электрон заселяет 2s -орбиталь. Электронная формула Ве: 2s 2

В основном состоянии следующий электрон бора В (z=5) занимает 2р -орбиталь, В:1s 2 2s 2 2p 1 ; его электронографическая диаграмма:

Следующие пять элементов имеют электронные конфигурации:

С (Z=6): 2s 2 2p 2 N (Z=7): 2s 2 2p 3

O (Z=8): 2s 2 2p 4 F (Z=9): 2s 2 2p 5

Ne (Z=10): 2s 2 2p 6

Приведенные электронные конфигурации определяются правилом Хунда.

Первый и второй энергетические уровни неона полностью заполнены. Обозначим его электронную конфигурацию и будем использовать в дальнейшем для краткости записи электронных формул атомов элементов.

Натрий Na (Z=11) и Mg (Z=12) открывают третий период. Внешние электроны занимают 3s -орбиталь:

Na (Z=11): 3s 1

Mg (Z=12): 3s 2

Затем, начиная с алюминия (Z=13), заполняется 3р -подуровень. Третий период заканчивается аргоном Ar (Z=18):

Al (Z=13): 3s 2 3p 1

Ar (Z=18): 3s 2 3p 6

Элементы третьего периода отличаются от элементов второго тем, что у них имеются свободные 3d -орбитали, которые могут участвовать в образовании химической связи. Это объясняет проявляемые элементами валентные состояния.

В четвертом периоде, в соответствии с правилом (n +l ), у калия К (Z=19) и кальция Са (Z=20) электроны занимают 4s -подуровень, а не 3d .Начиная со скандия Sc (Z=21) и кончая цинком Zn (Z=30), происходит заполнение3d -подуровня:

Электронные формулы d -элементов можно представить в ионном виде: подуровни перечисляются в порядке возрастания главного квантового числа, а при постоянном n – в порядке увеличения орбитального квантового числа. Например, для Zn такая запись будет выглядеть так: Обе эти записи эквивалентны, но приведенная ранее формула цинка правильно отражает порядок заполнения подуровней.

В ряду 3d -элементов у хрома Сr (Z=24) наблюдается отклонение от правила (n +l ). В соответствии с этим правилом конфигурация Сr должна выглядеть так: Установлено, что его реальная конфигурация - Иногда этот эффект называют «провалом» электрона. Подобные эффекты объясняются повышенной устойчивостью наполовину (p 3 , d 5 , f 7) и полностью (p 6 , d 10 , f 14) заполненных подуровней.

Отклонения от правила (n +l ) наблюдаются и у других элементов (табл. 6). Это связано с тем, что с увеличение главного квантового числа различия между энергиями подуровней уменьшаются.

Далее происходит заполнение 4p -подуровня (Ga - Kr). В четвертом периоде содержится всего 18 элементов. Аналогично происходит заполнение 5s -, 4d - и 5p - подуровней у 18-ти элементов пятого периода. Отметим, что энергия 5s - и 4d -подуровней очень близки, и электрон с 5s -подуровня может легко переходить на 4d -подуровень. На 5s -подуровне у Nb, Mo, Tc, Ru, Rh, Ag находится только один электрон. В основном состоянии 5s -подуровень Pd не заполнен. Наблюдается «провал» двух электронов.

В шестом периоде после заполнения 6s -подуровня у цезия Cs (Z=55) и бария Ba (Z=56) следующий электрон, согласно правилу (n +l ), должен занять 4f -подуровень. Однако у лантана La (Z=57) электрон поступает на 5d -подуровень. Заполненный на половину (4f 7) 4f -подуровень обладает повышенной устойчивостью, поэтому у гадолиния Gd (Z=64), следующего за европием Eu (Z=63), на 4f -подуровне сохраняется прежнее количество электронов (7), а новый электрон поступает на 5d -подуровень, нарушая правило (n +l ). У тербия Tb (Z=65) очередной электрон занимает 4f -подуровень и происходит переход электрона с 5d -подуровня (конфигурация 4f 9 6s 2). Заполнение 4f -подуровня заканчивается у иттербия Yb (Z=70). Следующий электрон атома лютеция Lu занимает 5d -подуровень. Его электронная конфигурация отличается от конфигурации атома лантана только полностью заполненным 4f -подуровнем.

Таблица 6

Исключения из (n +l ) – правила для первых 86 элементов

Элемент Электронная конфигурация
по правилу (n +l ) фактическая
Cr (Z=24) Cu (Z=29) Nb (Z=41) Mo (Z=42) Tc (Z=43) Ru (Z=44) Rh (Z=45) Pd (Z=46) Ag (Z=47) La (Z=57) Ce (Z=58) Gd (Z=64) Ir (Z=77) Pt (Z=78) Au (Z=79) 4s 2 3d 4 4s 2 3d 9 5s 2 4d 3 5s 2 4d 4 5s 2 4d 5 5s 2 4d 6 5s 2 4d 7 5s 2 4d 8 5s 2 4d 9 6s 2 4f 1 5d 0 6s 2 4f 2 5d 0 6s 2 4f 8 5d 0 6s 2 4f 14 5d 7 6s 2 4f 14 5d 8 6s 2 4f 14 5d 9 4s 1 3d 5 4s 1 3d 10 5s 1 4d 4 5s 1 4d 5 5s 1 4d 6 5s 1 4d 7 5s 1 4d 8 5s 0 4d 10 5s 1 4d 10 6s 2 4f 0 5d 1 6s 2 4f 1 5d 1 6s 2 4f 7 5d 1 6s 0 4f 14 5d 9 6s 1 4f 14 5d 9 6s 1 4f 14 5d 10

В настоящее время в Периодической системе элементов Д.И. Менделеева под скандием Sc и иттрием Y располагаются иногда лютеций (а не лантан) как первый d -элемент, а все 14 элементов перед ним, включая лантан, вынося в особую группу лантаноидов за пределы Периодической системы элементов.

Химические свойства элементов определяются, главным образом, структурой внешних электронных уровней. Изменение числа электронов на третьем снаружи 4f -подуровне слабо отражается на химических свойствах элементов. Поэтому все 4f -элементы схожи по своим свойствам. Затем в шестом периоде происходит заполнение 5d -подуровня (Hf – Hg) и 6p -подуровня (Tl – Rn).

В седьмом периоде 7s -подуровень заполняется у франция Fr (Z=87) и радия Ra (Z=88). У актиния наблюдается отклонение от правила (n +l ), и очередной электрон заселяет 6d -подуровень, а не 5f . Далее следует группа элементов (Th – No) с заполняющимся 5f -подуровнем, которые образуют семейство актиноидов . Отметим, что 6d - и 5f - подуровни имеют столь близкие энергии, что электронная конфигурация атомов актиноидов часто не подчиняется правилу (n +l ). Но в данном случае значение точной конфигурации 5f т 5d m не столь важно, поскольку она довольно слабо влияет на химические свойства элемента.

У лоуренсия Lr (Z=103) новый электрон поступает на 6d -подуровень. Этот элемент иногда помещают в Периодической системе под лютецием. Седьмой период не завершен. Элементы 104 – 109 неустойчивы и их свойства малоизвестны. Таким образом, с ростом заряда ядра периодически повторяются сходные электронные структуры внешних уровней. В связи с этим следует ожидать и периодического изменения различных свойств элементов.

Отметим, что описанные электронные конфигурации относятся к изолированным атомам в газовой фазе. Конфигурация атома элемента может быть совершенно иной, если атом находится в твердом теле или растворе.